Online Adaptive Multivariate Time Series Forecasting

被引:1
|
作者
Saadallah, Amal [1 ]
Mykula, Hanna [1 ]
Morik, Katharina [1 ]
机构
[1] TU Dortmund, Dept Comp Sci, Artificial Intelligence Grp, Dortmund, Germany
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT VI | 2023年 / 13718卷
关键词
Multivariate time series; Forecasting; Automated model selection; Spatio-temporal dependencies; Concept-drift; DRIFT;
D O I
10.1007/978-3-031-26422-1_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multivariate Time Series (MTS) involve multiple time series variables that are interdependent. The MTS follows two dimensions, namely spatial along the different variables composing the MTS and temporal. Both, the complex and the time-evolving nature of MTS data make forecasting one of the most challenging tasks in time series analysis. Typical methods for MTS forecasting are designed to operate in a static manner in time or space without taking into account the evolution of spatio-temporal dependencies among data observations, which may be subject to significant changes. Moreover, it is generally accepted that none of these methods is universally valid for every application. Therefore, we propose an online adaptation of MTS forecasting by devising a fully automated framework for both adaptive input spatio-temporal variables and adequate forecasting model selection. The adaptation is performed in an informed manner following concept-drift detection in both spatio-temporal dependencies and model performance over time. In addition, a well-designed meta-learning scheme is used to automate the selection of appropriate dependence measures and the forecasting model. An extensive empirical study on several real-world datasets shows that our method achieves excellent or on-par results in comparison to the state-of-the-art (SoA) approaches as well as several baselines.
引用
收藏
页码:19 / 35
页数:17
相关论文
共 50 条
  • [21] Dynamic spatio-temporal graph network with adaptive propagation mechanism for multivariate time series forecasting
    Li, ZhuoLin
    Yu, Jie
    Zhang, GaoWei
    Xu, LingYu
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 216
  • [22] MultiCast: Zero-Shot Multivariate Time Series Forecasting Using LLMs
    Chatzigeorgakidis, Georgios
    Lentzos, Konstantinos
    Skoutas, Dimitrios
    2024 IEEE 40TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOP, ICDEW, 2024, : 119 - 127
  • [23] Graph neural network model for multivariate time series forecasting
    Zhang, Han
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (12): : 2500 - 2509
  • [24] Dynamic Hypergraph Structure Learning for Multivariate Time Series Forecasting
    Wang, Shun
    Zhang, Yong
    Lin, Xuanqi
    Hu, Yongli
    Huang, Qingming
    Yin, Baocai
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (04) : 556 - 567
  • [25] Towards Synthetic Multivariate Time Series Generation for Flare Forecasting
    Chen, Yang
    Kempton, Dustin J.
    Ahmadzadeh, Azim
    Angryk, Rafal A.
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING (ICAISC 2021), PT I, 2021, 12854 : 296 - 307
  • [26] Permutation Dependent Feature Mixing for Multivariate Time Series Forecasting
    Yamazono, Rikuto
    Hachiya, Hirotake
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT III, ECML PKDD 2024, 2024, 14943 : 301 - 316
  • [27] A multivariate heuristic model for fuzzy time-series forecasting
    Huarng, Kun-Huang
    Yu, Tiffany Hui-Kuang
    Hsu, Yu Wei
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2007, 37 (04): : 836 - 846
  • [28] MTSMAE: Masked Autoencoders for Multivariate Time-Series Forecasting
    Tang, Peiwang
    Zhang, Xianchao
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 982 - 989
  • [29] Online Learning of Temporal Association Rule on Dynamic Multivariate Time Series Data
    He, Guoliang
    Jin, Dawei
    Dai, Lifang
    Xin, Xin
    Yu, Zhiwen
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 8954 - 8966
  • [30] Locally Adaptive Factor Processes for Multivariate Time Series
    Durante, Daniele
    Scarpa, Bruno
    Dunson, David B.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 1493 - 1522