Online Adaptive Multivariate Time Series Forecasting

被引:1
|
作者
Saadallah, Amal [1 ]
Mykula, Hanna [1 ]
Morik, Katharina [1 ]
机构
[1] TU Dortmund, Dept Comp Sci, Artificial Intelligence Grp, Dortmund, Germany
关键词
Multivariate time series; Forecasting; Automated model selection; Spatio-temporal dependencies; Concept-drift; DRIFT;
D O I
10.1007/978-3-031-26422-1_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multivariate Time Series (MTS) involve multiple time series variables that are interdependent. The MTS follows two dimensions, namely spatial along the different variables composing the MTS and temporal. Both, the complex and the time-evolving nature of MTS data make forecasting one of the most challenging tasks in time series analysis. Typical methods for MTS forecasting are designed to operate in a static manner in time or space without taking into account the evolution of spatio-temporal dependencies among data observations, which may be subject to significant changes. Moreover, it is generally accepted that none of these methods is universally valid for every application. Therefore, we propose an online adaptation of MTS forecasting by devising a fully automated framework for both adaptive input spatio-temporal variables and adequate forecasting model selection. The adaptation is performed in an informed manner following concept-drift detection in both spatio-temporal dependencies and model performance over time. In addition, a well-designed meta-learning scheme is used to automate the selection of appropriate dependence measures and the forecasting model. An extensive empirical study on several real-world datasets shows that our method achieves excellent or on-par results in comparison to the state-of-the-art (SoA) approaches as well as several baselines.
引用
收藏
页码:19 / 35
页数:17
相关论文
共 50 条
  • [1] A novel extreme adaptive GRU for multivariate time series forecasting
    Zhang, Yifan
    Wu, Rui
    Dascalu, Sergiu M.
    Harris, Frederick C.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] Forecasting multivariate time series
    Athanasopoulos, George
    Vahid, Farshid
    INTERNATIONAL JOURNAL OF FORECASTING, 2015, 31 (03) : 680 - 681
  • [3] Hybrid Convolution Based Online Multivariate Time Series Forecasting Algorithm
    Wang, Jing
    Wang, Jiang
    Ding, Jianli
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14876 : 163 - 174
  • [4] Robust and Adaptive Filtering of Multivariate Online-Monitoring Time Series
    Borowski, M.
    Imhoff, M.
    Schettlinger, K.
    Gather, U.
    4TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, 2009, 22 (1-3): : 167 - 170
  • [5] Forecasting time series with multivariate copulas
    Simard, Clarence
    Remillard, Bruno
    DEPENDENCE MODELING, 2015, 3 (01): : 59 - 82
  • [6] Multivariate Time Series Forecasting: A Review
    Mendis, Kasun
    Wickramasinghe, Manjusri
    Marasinghe, Pasindu
    2024 2ND ASIA CONFERENCE ON COMPUTER VISION, IMAGE PROCESSING AND PATTERN RECOGNITION, CVIPPR 2024, 2024,
  • [7] ADAPTIVE ONLINE LOAD FORECASTING VIA TIME-SERIES MODELING
    PAARMANN, LD
    NAJAR, MD
    ELECTRIC POWER SYSTEMS RESEARCH, 1995, 32 (03) : 219 - 225
  • [8] Learning and integration of adaptive hybrid graph structures for multivariate time series forecasting
    Guo, Ting
    Hou, Feng
    Pang, Yan
    Jia, Xiaoyun
    Wang, Zhongwei
    Wang, Ruili
    INFORMATION SCIENCES, 2023, 648
  • [9] Online Sequential Model for Multivariate Time Series Prediction With Adaptive Forgetting Factor
    Dai, Jinling
    Xu, Aiqiang
    Liu, Xing
    Yu, Chao
    Wu, Yangyong
    IEEE ACCESS, 2020, 8 : 175958 - 175971
  • [10] Graphformer: Adaptive graph correlation transformer for multivariate long sequence time series forecasting
    Wang, Yijie
    Long, Hao
    Zheng, Linjiang
    Shang, Jiaxing
    KNOWLEDGE-BASED SYSTEMS, 2024, 285