A Novel State Estimation Approach for Suspension System with Time-Varying and Unknown Noise Covariance

被引:2
作者
Li, Qiangqiang [1 ]
Chen, Zhiyong [1 ]
Shi, Wenku [1 ]
机构
[1] Jilin Univ, State Key Lab Automot Simulat & Control, Changchun 130000, Peoples R China
关键词
suspension system; variational Bayesian; adaptive Kalman filter; inverse Wishart distribution; road classification; UNSCENTED KALMAN FILTER; MODEL;
D O I
10.3390/act12020070
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a novel state estimation approach based on the variational Bayesian adaptive Kalman filter (VBAKF) and road classification is proposed for a suspension system with time-varying and unknown noise covariance. Using the VB approach, the time-varying noise covariance can be inferred from the inverse-Wishart distribution and then optimized state estimation by the finite sampling posterior probability distribution function (PDF) of noise covariance and backward Kalman smoothing. In addition, a new road classification algorithm based on multi-objective optimization and the linear classifier is proposed to identify the unknown noise covariance. Simulation results for a suspension model with time-varying and unknown noise covariance show that the proposed approach has a higher performance in state estimation accuracy than other filters.
引用
收藏
页数:20
相关论文
共 36 条
[1]   A maximum-likelihood Kalman filter for switching discrete-time linear systems [J].
Alessandri, Angelo ;
Baglietto, Marco ;
Battistelli, Giorgio .
AUTOMATICA, 2010, 46 (11) :1870-1876
[2]  
Aly AA., 2013, Int J Control Autom Syst, V2, P46
[3]  
Anderson B. D. O., 1979, OPTIMAL FILTERING
[4]   Approximate Bayesian Smoothing with Unknown Process and Measurement Noise Covariances [J].
Ardeshiri, Tohid ;
Ozkan, Emre ;
Orguner, Umut ;
Gustafsson, Fredrik .
IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (12) :2450-2454
[5]   Industrial Applications of the Kalman Filter: A Review [J].
Auger, Francois ;
Hilairet, Mickael ;
Guerrero, Josep M. ;
Monmasson, Eric ;
Orlowska-Kowalska, Teresa ;
Katsura, Seiichiro .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (12) :5458-5471
[6]   An Active Vehicle Suspension Control Approach with Electromagnetic and Hydraulic Actuators [J].
Beltran-Carbajal, Francisco ;
Valderrabano-Gonzalez, Antonio ;
Favela-Contreras, Antonio ;
Luis Hernandez-Avila, Jose ;
Lopez-Garcia, Irvin ;
Tapia-Olvera, Ruben .
ACTUATORS, 2019, 8 (02)
[7]   Dynamic Matrix-Variate Graphical Models [J].
Carvalho, Carlos M. ;
West, Mike .
BAYESIAN ANALYSIS, 2007, 2 (01) :69-97
[8]   Adaptive Unscented Kalman Filter Based Estimation and Filtering for Dynamic Positioning with Model Uncertainties [J].
Deng, Fang ;
Yang, Hua-Lin ;
Wang, Long-Jin .
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2019, 17 (03) :667-678
[9]   Noise covariance matrices in state-space models: A survey and comparison of estimation methodsPart I [J].
Dunik, Jindrich ;
Straka, Ondrej ;
Kost, Oliver ;
Havlik, Jindrich .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2017, 31 (11) :1505-1543
[10]   Robust Distributed Kalman Filtering: On the Choice of the Local Tolerance [J].
Emanuele, Alessandro ;
Gasparotto, Francesco ;
Guerra, Giacomo ;
Zorzi, Mattia .
SENSORS, 2020, 20 (11) :1-21