Fixed points of (∈ - δ) nonexpansive mappings

被引:0
作者
Pant, R. P. [1 ]
机构
[1] Dalhousie Villa Cpd, Naini Tal, India
关键词
Contraction mappings; non-expansive mappings; fixed points; eventual fixed points; cardinality; DISCONTINUITY; CONTRACTIONS;
D O I
10.2298/FIL2409995P
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain fixed point theorems for nonexpansive mappings by employing a new (is an element of, delta) condition. Our results contain the well-known fixed point theorems due to Meir and Keeler, and Banach as particular cases. The fixed-point sets and domains of the mappings satisfying our theorems have interesting algebraic, geometric and dynamical features. Various examples substantiate our results.
引用
收藏
页码:2995 / 3000
页数:6
相关论文
共 18 条
[1]  
BANACH S., 1922, Fund. Math., V3, P133, DOI DOI 10.4064/FM-3-1-133-181
[2]   GENERALIZED MEIR-KEELER TYPE CONTRACTIONS AND DISCONTINUITY AT FIXED POINT [J].
Bisht, Ravindra K. ;
Rakocevic, Vladimir .
FIXED POINT THEORY, 2018, 19 (01) :57-64
[3]   A remark on discontinuity at fixed point [J].
Bisht, Ravindra K. ;
Pant, R. P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (02) :1239-1242
[4]   A new solution to the discontinuity problem on metric spaces [J].
Celik, Ufuk ;
Ozgur, Nihal .
TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (04) :1115-1126
[5]  
Devaney R. L., 1986, INTRO CHAOTIC DYNAMI
[6]  
Holmgren R. A., 1994, A First Course in Discrete Dynamical Systems
[7]   NEWLY FIXED DISC RESULTS USING ADVANCED CONTRACTIONS ON F-METRIC SPACE [J].
Hussain, Aftab ;
Al-Sulami, Hamed ;
Hussain, Nawab ;
Farooq, Hamza .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (06) :2313-2322
[8]   A THEOREM ON CONTRACTION MAPPINGS [J].
MEIR, A ;
KEELER, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 28 (02) :326-&
[9]   Some Fixed-Circle Theorems on Metric Spaces [J].
Ozgur, Nihal Yilmaz ;
Tas, Nihal .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (04) :1433-1449
[10]   Fixed Points and Continuity of Contractive Maps [J].
Pant, Abhijit ;
Pant, R. P. .
FILOMAT, 2017, 31 (11) :3501-3506