R-TOSS: A Framework for Real-Time Object Detection using Semi-Structured Pruning

被引:5
作者
Balasubramaniam, Abhishek [1 ]
Sunny, Febin [1 ]
Pasricha, Sudeep [1 ]
机构
[1] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
来源
2023 60TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC | 2023年
关键词
pruning; object detection; YOLOv5; RetinaNet; Jetson TX2; model compression; computer vision;
D O I
10.1109/DAC56929.2023.10247917
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detectors used in autonomous vehicles can have high memory and computational overheads. In this paper, we introduce a novel semi-structured pruning framework called R-TOSS that overcomes the shortcomings of state-of-the-art model pruning techniques. Experimental results on the JetsonTX2 platform show that R-TOSS has a compression rate of 4.4x on the YOLOv5 object detector with a 2.15x speedup in inference time and 57.01% decrease in energy usage. R-TOSS also enables 2.89x compression on RetinaNet with a 1.86x speedup in inference time and 56.31% decrease in energy usage. We also demonstrate significant improvements compared to various state-of-the-art pruning techniques.
引用
收藏
页数:6
相关论文
共 50 条
[41]   A Real-time Object Detection Framework for Aerial Imagery Using Deep Neural Networks and Synthetic Training Images [J].
Narayanan, Priya ;
Borel-Donohue, Christoph ;
Lee, Hyungtae ;
Kwon, Heesung ;
Rao, Raghuveer .
SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXVII, 2018, 10646
[42]   Comparison of CW Radar Systems for Radar Applications using Object Detection and Real-Time Tracking [J].
Melgoza, Cesar Martinez ;
George, Kiran ;
Miho, Jake .
2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2022, :342-346
[43]   Hardware-Software Partitioning for Real-Time Object Detection Using Dynamic Parameter Optimization [J].
Zaharia, Corneliu ;
Popescu, Vlad ;
Sandu, Florin .
SENSORS, 2023, 23 (10)
[44]   UPAQ: A Framework for Real-Time and Energy-Efficient 3D Object Detection in Autonomous Vehicles [J].
Balasubramaniam, Abhishek ;
Sunny, Febin P. ;
Pasricha, Sudeep .
2025 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE, DATE, 2025,
[45]   A Wearable Assistive Device for Blind Pedestrians Using Real-Time Object Detection and Tactile Presentation [J].
Shen, Junjie ;
Chen, Yiwen ;
Sawada, Hideyuki .
SENSORS, 2022, 22 (12)
[46]   Robust object detection with real-time fusion of multiview foreground silhouettes [J].
Xu, Ming ;
Ren, Jie ;
Chen, Dongyong ;
Smith, Jeremy S. ;
Liu, Zhechi ;
Jia, Tianyuan .
OPTICAL ENGINEERING, 2012, 51 (04)
[47]   Deep Learning Based, Real-Time Object Detection for Autonomous Driving [J].
Akyol, Gamze ;
Kantarci, Alperen ;
Celik, Ali Eren ;
Ak, Abdullah Cihan .
2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
[48]   Real-time Object Detection for Visually Impaired with Optimal Combination of Scores [J].
Nijhawan, Siddharth Sagar ;
Kumar, Aditi ;
Bhardwaj, Shubham ;
Nijhawan, Geeta .
PROCEEDINGS OF THE 2019 6TH INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2019, :307-311
[49]   Real-Time Abnormal Object Detection for Video Surveillance in Smart Cities [J].
Ingle, Palash Yuvraj ;
Kim, Young-Gab .
SENSORS, 2022, 22 (10)
[50]   Evaluating Pruned Object Detection Networks for Real-Time Robot Vision [J].
O'Keeffe, Simon ;
Villing, Rudi .
2018 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC), 2018, :91-96