R-TOSS: A Framework for Real-Time Object Detection using Semi-Structured Pruning

被引:5
作者
Balasubramaniam, Abhishek [1 ]
Sunny, Febin [1 ]
Pasricha, Sudeep [1 ]
机构
[1] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
来源
2023 60TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC | 2023年
关键词
pruning; object detection; YOLOv5; RetinaNet; Jetson TX2; model compression; computer vision;
D O I
10.1109/DAC56929.2023.10247917
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detectors used in autonomous vehicles can have high memory and computational overheads. In this paper, we introduce a novel semi-structured pruning framework called R-TOSS that overcomes the shortcomings of state-of-the-art model pruning techniques. Experimental results on the JetsonTX2 platform show that R-TOSS has a compression rate of 4.4x on the YOLOv5 object detector with a 2.15x speedup in inference time and 57.01% decrease in energy usage. R-TOSS also enables 2.89x compression on RetinaNet with a 1.86x speedup in inference time and 56.31% decrease in energy usage. We also demonstrate significant improvements compared to various state-of-the-art pruning techniques.
引用
收藏
页数:6
相关论文
共 50 条
[31]   A Survey on Real-Time Object Detection on FPGAs [J].
Hozhabr, Seyed Hani ;
Giorgi, Roberto .
IEEE ACCESS, 2025, 13 :38195-38238
[32]   A real-time object detection algorithm for video [J].
Lu, Shengyu ;
Wang, Beizhan ;
Wang, Hongji ;
Chen, Lihao ;
Ma Linjian ;
Zhang, Xiaoyan .
COMPUTERS & ELECTRICAL ENGINEERING, 2019, 77 :398-408
[33]   Real-Time SSDLite Object Detection on FPGA [J].
Kim, Suchang ;
Na, Seungho ;
Kong, Byeong Yong ;
Choi, Jaewoong ;
Park, In-Cheol .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2021, 29 (06) :1192-1205
[34]   A Real-Time Driver Assistance System Using Object Detection and Tracking [J].
Murthy, Jamuna S. ;
Chitlapalli, Sanjeeva S. ;
Anirudha, U. N. ;
Subramanya, Varsha .
ADVANCES IN COMPUTING AND DATA SCIENCES (ICACDS 2022), PT II, 2022, 1614 :150-159
[35]   Real-Time Object Detection and Tracking using Flash LiDAR Imagery [J].
Carvalho, Daniel R. M. ;
Lompado, Art ;
Consolo, Riccardo ;
Bhattacharjee, Abhijit ;
Brown, Jarrod P. .
AUTOMATIC TARGET RECOGNITION XXXIV, 2024, 13039
[36]   FPGA Resource-aware Structured Pruning for Real-Time Neural Networks [J].
Ramhorst, Benjamin ;
Loncar, Vladimir ;
Constantinides, George A. .
2023 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE TECHNOLOGY, ICFPT, 2023, :282-283
[37]   A parallel computing framework for real-time moving object detection on high resolution videos [J].
Hashmi, Mohammad Farukh ;
Ayele, Eskinder ;
Naik, Banoth Thulasya ;
Keskar, Avinash G. .
JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, 62 (03) :683-704
[38]   Edge-Network-Assisted Real-Time Object Detection Framework for Autonomous Driving [J].
Kim, Seung-Wook ;
Ko, Keunsoo ;
Ko, Haneul ;
Leung, Victor C. M. .
IEEE NETWORK, 2021, 35 (01) :177-183
[39]   Real-Time Player Tracking Framework on MOBA Game Video Through Object Detection [J].
Kim, Dae-Wook ;
Park, Sung-Yun ;
Yang, Seong-Il ;
Lee, Sang-Kwang .
IEEE TRANSACTIONS ON GAMES, 2025, 17 (02) :498-509
[40]   Exploring a Multimodal Mixture-Of-YOLOs Framework for Advanced Real-Time Object Detection [J].
Kim, Jinsoo ;
Cho, Jeongho .
APPLIED SCIENCES-BASEL, 2020, 10 (02)