R-TOSS: A Framework for Real-Time Object Detection using Semi-Structured Pruning

被引:3
|
作者
Balasubramaniam, Abhishek [1 ]
Sunny, Febin [1 ]
Pasricha, Sudeep [1 ]
机构
[1] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
来源
2023 60TH ACM/IEEE DESIGN AUTOMATION CONFERENCE, DAC | 2023年
关键词
pruning; object detection; YOLOv5; RetinaNet; Jetson TX2; model compression; computer vision;
D O I
10.1109/DAC56929.2023.10247917
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detectors used in autonomous vehicles can have high memory and computational overheads. In this paper, we introduce a novel semi-structured pruning framework called R-TOSS that overcomes the shortcomings of state-of-the-art model pruning techniques. Experimental results on the JetsonTX2 platform show that R-TOSS has a compression rate of 4.4x on the YOLOv5 object detector with a 2.15x speedup in inference time and 57.01% decrease in energy usage. R-TOSS also enables 2.89x compression on RetinaNet with a 1.86x speedup in inference time and 56.31% decrease in energy usage. We also demonstrate significant improvements compared to various state-of-the-art pruning techniques.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Evolutionary channel pruning for real-time object detection
    Yang, Changcai
    Lin, Zhijie
    Lan, Ziyang
    Chen, Riqing
    Wei, Lifang
    Liu, Yizhang
    KNOWLEDGE-BASED SYSTEMS, 2024, 287
  • [2] Model compression for real-time object detection using rigorous gradation pruning
    Yang, Defu
    Solihin, Mahmud Iwan
    Zhao, Yawen
    Wijaya, Andika Aji
    Ang, Chun Kit
    Lim, Wei Hong
    Yang, Defu
    Solihin, Mahmud Iwan
    Zhao, Yawen
    Cai, Bingyu
    Chen, Chaoran
    Wijaya, Andika Aji
    ISCIENCE, 2025, 28 (01)
  • [3] Improved Pruning Algorithms in Multiscale Real-time Object Detection
    Abualkibash, Munther
    Mahmood, Ausif
    2015 IEEE LONG ISLAND SYSTEMS, APPLICATIONS AND TECHNOLOGY CONFERENCE (LISAT), 2015,
  • [4] Neural Pruning Search for Real-Time Object Detection of Autonomous Vehicles
    Zhao, Pu
    Yuan, Geng
    Cai, Yuxuan
    Niu, Wei
    Liu, Qi
    Wen, Wujie
    Ren, Bin
    Wang, Yanzhi
    Lin, Xue
    2021 58TH ACM/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2021, : 835 - 840
  • [5] Real-time identification of driveable areas in a semi-structured terrain for an autonomous ground vehicle
    Chaturvedi, P
    Sung, E
    Malcolm, AA
    Ibañez-Guzmán, J
    UNMANNED GROUND VEHICLE TECHNOLOGY III, 2001, 4364 : 302 - 312
  • [6] A Framework for Benchmarking Real-Time Embedded Object Detection
    Schlosser, Michael
    Koenig, Daniel
    Teutsch, Michael
    PATTERN RECOGNITION, DAGM GCPR 2022, 2022, 13485 : 545 - 559
  • [7] Structural Pruning for Real-Time Multi-object Detection on NAO Robots
    Specchi, G.
    Suriani, V.
    Brienza, M.
    Laus, F.
    Maiorana, F.
    Pennisi, A.
    Nardi, D.
    Bloisi, D. D.
    ROBOCUP 2023: ROBOT WORLD CUP XXVI, 2024, 14140 : 203 - 214
  • [8] CAD: Scale Invariant Framework for Real-Time Object Detection
    Zhou, Huajun
    Li, Zechao
    Ning, Chengcheng
    Tang, Jinhui
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 760 - 768
  • [9] C4: A Real-Time Object Detection Framework
    Wu, Jianxin
    Liu, Nini
    Geyer, Christopher
    Rehg, James M.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (10) : 4096 - 4107
  • [10] Real-time Object Detection with FPGA Using CenterNet
    Solovyev, Roman A.
    Telpukhov, Dmitry, V
    Romanova, IrMa I.
    Kustov, Alexander G.
    Mkrtchan, Ilya A.
    PROCEEDINGS OF THE 2021 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (ELCONRUS), 2021, : 2029 - 2034