Revealing in-plane movement of platinum in polymer electrolyte fuel cells after heavy-duty vehicle lifetime

被引:20
作者
Khedekar, Kaustubh [1 ,2 ]
Zaffora, Andrea [3 ,4 ]
Santamaria, Monica [4 ]
Coats, Matthew [5 ]
Pylypenko, Svitlana [5 ]
Braaten, Jonathan [6 ]
Atanassov, Plamen [3 ]
Tamura, Nobumichi [7 ]
Cheng, Lei [6 ]
Johnston, Christina [6 ]
Zenyuk, Iryna V. [1 ,2 ,3 ]
机构
[1] Univ Calif Irvine, Dept Mat Sci & Engn, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Natl Fuel Cell Res Ctr, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Chem & Biomol Engn, Irvine, CA 92697 USA
[4] Univ Palermo, Dipartimento Ingn, Palermo, Italy
[5] Colorado Sch Mines, Dept Chem, Golden, CO USA
[6] Bosch Res & Technol Ctr North Amer, Sunnyvale, CA 94085 USA
[7] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA
关键词
CATALYST DEGRADATION; CATHODE CATALYST; MEMBRANE; PERFORMANCE; IMPACT; TRANSPORT; PRESSURE; HYDROGEN;
D O I
10.1038/s41929-023-00993-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fuel cell heavy-duty vehicles (HDVs) require increased durability of oxygen-reduction-reaction electrocatalysts, making knowledge of realistic degradation mechanisms critical. Here identical-location micro-X-ray fluorescence spectroscopy was performed on membrane electrode assemblies. The results exposed heavy in-plane movement of electrocatalyst after HDV lifetime, suggesting that electrochemical Ostwald ripening may not be a local effect. Development of local loading hotspots and preferential movement of electrocatalyst away from cathode catalyst layer cracks was observed. The heterogeneous degradation exhibited by a modified cathode gas diffusion layer membrane electrode assembly after HDV lifetime was successfully quantified by the identical-location approach. Further synchrotron micro-X-ray diffraction and micro-X-ray fluorescence experiments were performed to obtain the currently unknown correlation between electrocatalyst nanoparticle size increase and loading change. A direct correlation was discovered which developed only after HDV lifetime. The work provides a route to engineer immediate system-level mitigation strategies and to develop structured cathode catalyst layers with durable electrocatalysts.
引用
收藏
页码:676 / 686
页数:11
相关论文
共 42 条
[1]  
[Anonymous], 2016, Greenhouse gas emissions
[2]  
[Anonymous], 2020, INVENTORY US GREENH
[3]  
[Anonymous], 2019, Annual Energy Outlook 2019
[4]  
Barabash R., 2014, Strain and Dislocation Gradients From Diffraction: Spatially- Resolved Local Structure and Defects
[5]   Scientific aspects of polymer electrolyte fuel cell durability and degradation [J].
Borup, Rod ;
Meyers, Jeremy ;
Pivovar, Bryan ;
Kim, Yu Seung ;
Mukundan, Rangachary ;
Garland, Nancy ;
Myers, Deborah ;
Wilson, Mahlon ;
Garzon, Fernando ;
Wood, David ;
Zelenay, Piotr ;
More, Karren ;
Stroh, Ken ;
Zawodzinski, Tom ;
Boncella, James ;
McGrath, James E. ;
Inaba, Minoru ;
Miyatake, Kenji ;
Hori, Michio ;
Ota, Kenichiro ;
Ogumi, Zempachi ;
Miyata, Seizo ;
Nishikata, Atsushi ;
Siroma, Zyun ;
Uchimoto, Yoshiharu ;
Yasuda, Kazuaki ;
Kimijima, Ken-ichi ;
Iwashita, Norio .
CHEMICAL REVIEWS, 2007, 107 (10) :3904-3951
[6]   Recent developments in catalyst -related PEM fuel cell durability [J].
Borup, Rodney L. ;
Kusoglu, Ahmet ;
Neyerlin, Kenneth C. ;
Mukundan, Rangachary ;
Ahluwalia, Rajesh K. ;
Cullen, David A. ;
More, Karren L. ;
Weber, Adam Z. ;
Myers, Deborah J. .
CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 21 :192-200
[7]   Direct Simulations of Pore-ScaleWater Transport through Diffusion Media [J].
Cetinbas, Firat C. ;
Ahluwalia, Rajesh K. ;
Shum, Andrew D. ;
Zenyuk, Iryna V. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (07) :F3001-F3008
[8]   Mapping of Heterogeneous Catalyst Degradation in Polymer Electrolyte Fuel Cells [J].
Cheng, Lei ;
Khedekar, Kaustubh ;
Rezaei Talarposhti, Morteza ;
Perego, Andrea ;
Metzger, Michael ;
Kuppan, Saravanan ;
Stewart, Sarah ;
Atanassov, Plamen ;
Tamura, Nobumichi ;
Craig, Nathan ;
Zenyuk, Iryna V. ;
Johnston, Christina M. .
ADVANCED ENERGY MATERIALS, 2020, 10 (28)
[9]   Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum [J].
Cherevko, Serhiy ;
Kulyk, Nadiia ;
Mayrhofer, Karl J. J. .
NANO ENERGY, 2016, 29 :275-298
[10]  
Cook D., 2015, ENGINES CHANGE