Rational fabrication and optimized design of hierarchical Ni3S2-MOF electrodes for enhanced electrochemical energy storage

被引:17
作者
Guo, Zengcai [1 ]
Mu, Jianpeng [1 ,2 ]
Wang, Junpeng [1 ]
Mu, Jingbo [1 ,3 ]
Che, Hongwei [1 ]
Li, Feng [1 ]
Yang, Hang [1 ]
He, Lixin [1 ,3 ]
Wei, Fangfang [1 ]
机构
[1] Hebei Univ Engn, Coll Mat Sci & Engn, Key Lab New Energy Dev & Energy Storage Technol Ha, Handan 056038, Peoples R China
[2] BatteroTech Co Ltd, Shanghai 201400, Peoples R China
[3] Hebei Univ Engn, Handan 056038, Peoples R China
关键词
MOF; Supercapacitors; Electrochemical performance; HIGH-PERFORMANCE; HYBRID; NANOSHEETS; FOAM; CONSTRUCTION;
D O I
10.1016/j.est.2023.108019
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
How to design and synthesize of advanced MOF-based electrode materials for high-performance supercapacitors is still a huge challenge, herein, CoNi-MOF@Ni3S2 and ZIF-67/Ni3S2 with unique heterostructures are rationally designed and constructed. The composite electrode materials not only make up for the poor conductivity of MOF, but also improve the structural stability of Ni3S2. As expected, the optimized ZIF-67/Ni3S2 and CoNi-MOF@Ni3S2 electrode demonstrates a remarkably enhanced specific capacitance of 1017.13 F g-1 and 1930.04 F g-1 at 1 A g- 1 Ni3S2//AC and CoNi-MOF@Ni3S2//AC devices were assembled, which delivered an impressive energy density of 94.49 and 125.34 Wh kg-1, along with the corresponding power density of 966.34 W kg-1 971.86 W kg-1, respectively. Moreover, by comparison, the CoNi-MOF@Ni3S2 electrode material exhibits better supercapacitor performance than ZIF-67/Ni3S2. This effective protective strategy provides an alternative way for constructing MOF or sulfide electrodes with remarkably improved energy storage performance. , respectively, which are higher than those of their respective monomeric components. Finally, ZIF-67/
引用
收藏
页数:10
相关论文
共 52 条
[1]   Recent trends in electrolytes for supercapacitors [J].
Bhat, T. S. ;
Patil, P. S. ;
Rakhi, R. B. .
JOURNAL OF ENERGY STORAGE, 2022, 50
[2]   MnCo2O4@Co(OH)2 coupled with N-doped carbon nanotubes@reduced graphene oxide nanosheets as electrodes for solid-state asymmetric supercapacitors [J].
Che, Hongwei ;
Lv, Yamei ;
Liu, Aifeng ;
Li, Hougui ;
Guo, Zengcai ;
Mu, Jingbo ;
Wang, Yanming ;
Zhang, Xiaoliang .
CHEMICAL ENGINEERING JOURNAL, 2020, 384
[3]   Hollow Carbon Nanofibers with Inside-outside Decoration of Bi-metallic MOF Derived Ni-Fe Phosphides as Electrode Materials for Asymmetric Supercapacitors [J].
Chhetri, Kisan ;
Kim, Taewoo ;
Acharya, Debendra ;
Muthurasu, Alagan ;
Dahal, Bipeen ;
Bhattarai, Roshan Mangal ;
Lohani, Prakash Chandra ;
Pathak, Ishwor ;
Ji, Seongmin ;
Ko, Tae Hoon ;
Kim, Hak Yong .
CHEMICAL ENGINEERING JOURNAL, 2022, 450
[4]   Affinity surface-assisted laser desorption/ionization mass spectrometry for peptide enrichment [J].
Coffinier, Yannick ;
Nguyen, Nhung ;
Drobecq, Herve ;
Melnyk, Oleg ;
Thomy, Vincent ;
Boukherroub, Rabah .
ANALYST, 2012, 137 (23) :5527-5532
[5]   Scanty graphene-driven phase control and heteroatom functionalization of ZIF-67-derived CoP-draped N-doped carbon/graphene as a hybrid electrode for high-performance asymmetric supercapacitor [J].
Gayathri, Sampath ;
Arunkumar, Paulraj ;
Han, Jong Hun .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 582 :1136-1148
[6]   Core/shell nanorodsof MnO2/carbon embedded with Ag nanoparticles as high-performance electrode materials for supercapacitors [J].
Guan, Yuming ;
Guo, Zengcai ;
Che, Hongwei ;
Mu, Jingbo ;
Zhang, Xiaoliang ;
Zhang, Zhixiao ;
Wang, Guangshuo ;
Bai, Yongmei ;
Xie, Hailong .
CHEMICAL ENGINEERING JOURNAL, 2018, 331 :23-30
[7]   In situ synthesis of integrated dodecahedron NiO/NiCo2O4 coupled with N-doped porous hollow carbon capsule for high-performance supercapacitors [J].
Guo, Zengcai ;
Zhao, Yuanxiang ;
Mu, Jianpeng ;
Li, Simin ;
Li, Feng ;
Wang, Junpeng ;
Yang, Hang ;
Mu, Jingbo ;
Zhang, Mingyi .
CERAMICS INTERNATIONAL, 2023, 49 (12) :19652-19663
[8]   Fabrication of NiPS3 coupled with hollow porous nitrogen-doped carbon capsules for high-performance asymmetric supercapacitor [J].
Guo, Zengcai ;
Zhao, Yuanxiang ;
Mu, Jianpeng ;
Zhang, Zhixiao ;
Mu, Jingbo ;
Che, Hongwei ;
Wang, Yanming ;
Zhang, Xiaoliang ;
Wang, Guangshuo ;
Zhang, Mingyi .
JOURNAL OF ENERGY STORAGE, 2023, 61
[9]   Enhancing the Capacitive Storage Performance of Carbon Fiber Textile by Surface and Structural Modulation for Advanced Flexible Asymmetric Supercapacitors [J].
Han, Yi ;
Lu, Yongzhuang ;
Shen, Shenghui ;
Zhong, Yu ;
Liu, Si ;
Xia, Xinhui ;
Tong, Yexiang ;
Lu, Xihong .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (07)
[10]   Constructing Co(OH)F Nanorods@NiCo-LDH Nanocages Derived from ZIF-67 for High-Performance Supercapacitors [J].
He, Yezeng ;
Zhang, Xiaolong ;
Wang, Jiemei ;
Sui, Yanwei ;
Qi, Jiqiu ;
Chen, Zheng ;
Zhang, Ping ;
Chen, Changjiu ;
Liu, Wei .
ADVANCED MATERIALS INTERFACES, 2021, 8 (17)