Machine Learning-Based Improvement of Aerosol Optical Depth from CHIMERE Simulations Using MODIS Satellite Observations

被引:7
作者
Lemmouchi, Farouk [1 ,2 ]
Cuesta, Juan [1 ,2 ]
Lachatre, Mathieu [3 ]
Brajard, Julien [4 ]
Coman, Adriana [1 ,2 ]
Beekmann, Matthias [5 ,6 ]
Derognat, Claude [3 ]
机构
[1] Univ Paris Est Creteil, F-94010 Creteil, France
[2] Univ Paris Cite, CNRS, LISA, F-94010 Creteil, France
[3] ARIA Technol, F-92100 Boulogne Billancourt, France
[4] Nansen Environm & Remote Sensing Ctr NERSC, N-5007 Bergen, Norway
[5] Univ Paris Cite, F-75013 Paris, France
[6] Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France
关键词
mineral dust; North African dust; Saharan dust; Bodele Depression; bias correction; machine learning; aerosol optical depth; chemistry transport model; aerosols; particulate matter; NORTH-AFRICAN DUST; 3-DIMENSIONAL DISTRIBUTION; DATA ASSIMILATION; NEURAL-NETWORKS; MODEL; PRODUCTS; PREDICTION; MONSOON; IMPACT; SCHEME;
D O I
10.3390/rs15061510
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We present a supervised machine learning (ML) approach to improve the accuracy of the regional horizontal distribution of the aerosol optical depth (AOD) simulated by the CHIMERE chemistry transport model over North Africa and the Arabian Peninsula using Moderate Resolution Imaging Spectroradiometer (MODIS) AOD satellite observations. Our method produces daily AOD maps with enhanced precision and full spatial domain coverage, which is particularly relevant for regions with a high aerosol abundance, such as the Sahara Desert, where there is a dramatic lack of ground-based measurements for validating chemistry transport simulations. We use satellite observations and some geophysical variables to train four popular regression models, namely multiple linear regression (MLR), random forests (RF), gradient boosting (XGB), and artificial neural networks (NN). We evaluate their performances against satellite and independent ground-based AOD observations. The results indicate that all models perform similarly, with RF exhibiting fewer spatial artifacts. While the regression slightly overcorrects extreme AODs, it remarkably reduces biases and absolute errors and significantly improves linear correlations with respect to the independent observations. We analyze a case study to illustrate the importance of the geophysical input variables and demonstrate the regional significance of some of them.
引用
收藏
页数:22
相关论文
共 77 条
[1]  
Abadi M., 2016, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, DOI DOI 10.48550/ARXIV.1603.04467
[2]   Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas [J].
Alfaro, SC ;
Gomes, L .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D16) :18075-18084
[3]  
[Anonymous], About us
[4]  
[Anonymous], WORLDV EXPL YOUR DYN
[5]  
Bellman R., 1961, ADAPTIVE CONTROL PRO, P276
[6]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[7]   Aerosol modeling with CHIMERE -: preliminary evaluation at the continental scale [J].
Bessagnet, B ;
Hodzic, A ;
Vautard, R ;
Beekmann, M ;
Cheinet, S ;
Honoré, C ;
Liousse, C ;
Rouil, L .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (18) :2803-2817
[8]   Fast-J2: Accurate simulation of stratospheric photolysis in global chemical models [J].
Bian, HS ;
Prather, MJ .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 2002, 41 (03) :281-296
[9]   Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models [J].
Bocquet, M. ;
Elbern, H. ;
Eskes, H. ;
Hirtl, M. ;
Zabkar, R. ;
Carmichael, G. R. ;
Flemming, J. ;
Inness, A. ;
Pagowski, M. ;
Perez Camano, J. L. ;
Saide, P. E. ;
San Jose, R. ;
Sofiev, M. ;
Vira, J. ;
Baklanov, A. ;
Carnevale, C. ;
Grell, G. ;
Seigneur, C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (10) :5325-5358
[10]   Randomizing outputs to increase prediction accuracy [J].
Breiman, L .
MACHINE LEARNING, 2000, 40 (03) :229-242