A deep recursive multi-scale feature fusion network for image super-resolution?

被引:19
作者
Liu, Feiqiang [1 ,2 ]
Yang, Xiaomin [1 ]
De Baets, Bernard [2 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Peoples R China
[2] Univ Ghent, Dept Data Anal & Math Modelling, KERMIT, Coupure Links 653, B-9000 Ghent, Belgium
关键词
Single Image Super-Resolution (SISR); Recursive networks; Multi-scale features; Progressive feature fusion; INTERPOLATION;
D O I
10.1016/j.jvcir.2022.103730
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, Convolutional Neural Networks (CNNs) have achieved great success in Single Image Super-Resolution (SISR). In particular, the recursive networks are now widely used. However, existing recursion-based SISR networks can only make use of multi-scale features in a layer-wise manner. In this paper, a Deep Recursive Multi-Scale Feature Fusion Network (DRMSFFN) is proposed to address this issue. Specifically, we propose a Recursive Multi-Scale Feature Fusion Block (RMSFFB) to make full use of multi-scale features. Besides, a Progressive Feature Fusion (PFF) technique is proposed to take advantage of the hierarchical features from the RMSFFB in a global manner. At the reconstruction stage, we use a deconvolutional layer to upscale the feature maps to the desired size. Extensive experimental results on benchmark datasets demonstrate the superiority of the proposed DRMSFFN in comparison with the state-of-the-art methods in both quantitative and qualitative evaluations.
引用
收藏
页数:10
相关论文
共 54 条
[1]   NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study [J].
Agustsson, Eirikur ;
Timofte, Radu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1122-1131
[2]   Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network [J].
Ahn, Namhyuk ;
Kang, Byungkon ;
Sohn, Kyung-Ah .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :256-272
[3]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[4]   How far are we from solving the 2D & 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks) [J].
Bulat, Adrian ;
Tzimiropoulos, Georgios .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :1021-1030
[5]   Structure-Aware Deep Learning for Product Image Classification [J].
Chen, Zhineng ;
Al, Shanshan ;
Jia, Caiyan .
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2019, 15 (01)
[6]   A novel online self-learning system with automatic object detection model for multimedia applications [J].
Cheng, Eric Juwei ;
Prasad, Mukesh ;
Yang, Jie ;
Zheng, Ding Rong ;
Tao, Xian ;
Mery, Domingo ;
Young, Ku Young ;
Lin, Chin Teng .
MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (11) :16659-16681
[7]   Second-order Attention Network for Single Image Super-Resolution [J].
Dai, Tao ;
Cai, Jianrui ;
Zhang, Yongbing ;
Xia, Shu-Tao ;
Zhang, Lei .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11057-11066
[8]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[9]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[10]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307