An Lp- primal-dual weak Galerkin method for convection-diffusion equations

被引:10
作者
Cao, Waixiang [1 ]
Wang, Chunmei [2 ]
Wang, Junping [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[3] Natl Sci Fdn, Div Math Sci, Alexandria, VA 22314 USA
基金
美国国家科学基金会;
关键词
Primal-dual weak Galerkin; Finite element methods; Second order elliptic problems; L(p)error estimate; Polygonal or polyhedral meshes; FINITE-ELEMENT-METHOD;
D O I
10.1016/j.cam.2022.114698
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the authors present a new L-p-primal-dual weak Galerkin method (L-p- PDWG) for convection-diffusion equations. Comparing with the standard L-2-PDWG method, the solution calculated from the L-p-PDWG may exhibit some important advantages and features (e.g., less jumps cross the element interface when p -> 1, or sparsity by using p = 1 and wavelet basis approximation). The existence and uniqueness of the numerical solution is discussed, and an optimal-order error estimate is derived in the L-q-norm for the primal variable, where 1/p+ 1/q = 1 with p > 1. Furthermore, error estimates are established for the numerical approximation of the dual variable in the standard W-m,W-p norm, 0 <= m <= 2. Numerical results are presented to demonstrate the efficiency and accuracy of the proposed L-p-PDWG method. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 17 条
[1]   ERROR ANALYSIS IN LP, 1 LESS-THAN-OR-EQUAL-TO-PARA-LESS-THAN-OR-EQUAL-TO-INFINITY FOR MIXED FINITE-ELEMENT METHODS FOR LINEAR AND QUASI-LINEAR ELLIPTIC PROBLEMS [J].
DURAN, RG .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1988, 22 (03) :371-387
[2]   Iterative methods for total variation denoising [J].
Vogel, CR ;
Oman, ME .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (01) :227-238
[3]   A PRIMAL-DUAL WEAK GALERKIN FINITE ELEMENT METHOD FOR FOKKER-PLANCK TYPE EQUATIONS [J].
Wang, Chunmei ;
Wang, Junping .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) :2632-2661
[4]   A primal-dual finite element method for first-order transport problems [J].
Wang, Chunmei ;
Wang, Junping .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 417
[5]   A new primal-dual weak Galerkin finite element method for ill-posed elliptic Cauchy problems [J].
Wang, Chunmei .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 371
[6]   Primal-dual weak Galerkin finite element methods for elliptic Cauchy problems [J].
Wang, Chunmei ;
Wang, Junping .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (03) :746-763
[7]   New discretization schemes for time-harmonic Maxwell equations by weak Galerkin finite element methods [J].
Wang, Chunmei .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 341 :127-143
[8]   A PRIMAL-DUAL WEAK GALERKIN FINITE ELEMENT METHOD FOR SECOND ORDER ELLIPTIC EQUATIONS IN NON-DIVERGENCE FORM [J].
Wang, Chunmei ;
Wang, Junping .
MATHEMATICS OF COMPUTATION, 2018, 87 (310) :515-545
[9]   A Weak Galerkin Finite Element Method for a Type of Fourth Order Problem Arising from Fluorescence Tomography [J].
Wang, Chunmei ;
Zhou, Haomin .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 71 (03) :897-918
[10]   Discretization of div-curl Systems by Weak Galerkin Finite Element Methods on Polyhedral Partitions [J].
Wang, Chunmei ;
Wang, Junping .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (03) :1144-1171