MR fingerprinting for semisolid magnetization transfer and chemical exchange saturation transfer quantification

被引:33
作者
Perlman, Or [1 ,2 ]
Farrar, Christian T. [1 ,2 ]
Heo, Hye-Young [3 ,4 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA
[2] Harvard Med Sch, Charlestown, MA 02129 USA
[3] Johns Hopkins Univ, Sch Med, Dept Radiol, Div MR Res, Baltimore, MD 21205 USA
[4] Kennedy Krieger Inst, FM Kirby Res Ctr Funct Brain Imaging, Baltimore, MD USA
基金
欧盟地平线“2020”; 美国国家卫生研究院;
关键词
CEST; chemical exchange rate; deep learning; MR fingerprinting (MRF); MT; pH; quantitative imaging; unsupervised learning; HUMAN BRAIN-TUMORS; PULSED CEST-MRI; IN-VIVO; PROTON SIGNALS; Z-SPECTRUM; PH; RELAXATION; CONTRAST; RATES; OPTIMIZATION;
D O I
10.1002/nbm.4710
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Chemical exchange saturation transfer (CEST) MRI has positioned itself as a promising contrast mechanism, capable of providing molecular information at sufficient resolution and amplified sensitivity. However, it has not yet become a routinely employed clinical technique, due to a variety of confounding factors affecting its contrast-weighted image interpretation and the inherently long scan time. CEST MR fingerprinting (MRF) is a novel approach for addressing these challenges, allowing simultaneous quantitation of several proton exchange parameters using rapid acquisition schemes. Recently, a number of deep-learning algorithms have been developed to further boost the performance and speed of CEST and semi-solid macromolecule magnetization transfer (MT) MRF. This review article describes the fundamental theory behind semisolid MT/CEST-MRF and its main applications. It then details supervised and unsupervised learning approaches for MRF image reconstruction and describes artificial intelligence (AI)-based pipelines for protocol optimization. Finally, practical considerations are discussed, and future perspectives are given, accompanied by basic demonstration code and data.
引用
收藏
页数:22
相关论文
共 113 条
[1]  
BALABAN R S, 1992, Magnetic Resonance Quarterly, V8, P116
[2]  
BLOCH F, 1946, PHYS REV, V70, P460, DOI 10.1103/PhysRev.70.460
[3]   CEST signal at 2ppm (CEST@2ppm) from Z-spectral fitting correlates with creatine distribution in brain tumor [J].
Cai, Kejia ;
Singh, Anup ;
Poptani, Harish ;
Li, Weiguo ;
Yang, Shaolin ;
Lu, Yang ;
Hariharan, Hari ;
Zhou, Xiaohong J. ;
Reddy, Ravinder .
NMR IN BIOMEDICINE, 2015, 28 (01) :1-8
[4]   Magnetic resonance imaging of glutamate [J].
Cai, Kejia ;
Haris, Mohammad ;
Singh, Anup ;
Kogan, Feliks ;
Greenberg, Joel H. ;
Hariharan, Hari ;
Detre, John A. ;
Reddy, Ravinder .
NATURE MEDICINE, 2012, 18 (02) :302-306
[5]  
Chen L, 2020, NAT COMMUN, V11, DOI [10.1038/s41467-020-14874-0, 10.1038/s41467-020-16959-2]
[6]   Evaluations of Extracellular pH within In Vivo Tumors Using acidoCEST MRI [J].
Chen, Liu Qi ;
Howison, Christine M. ;
Jeffery, Justin J. ;
Robey, Ian F. ;
Kuo, Phillip H. ;
Pagel, Mark D. .
MAGNETIC RESONANCE IN MEDICINE, 2014, 72 (05) :1408-1417
[7]   Synthetic data in machine learning for medicine and healthcare [J].
Chen, Richard J. ;
Lu, Ming Y. ;
Chen, Tiffany Y. ;
Williamson, Drew F. K. ;
Mahmood, Faisal .
NATURE BIOMEDICAL ENGINEERING, 2021, 5 (06) :493-497
[8]   Fostering a Healthy AI Ecosystem for Radiology: Conclusions of the 2018 RSNA Summit on AI in Radiology [J].
Chokshi, Falgun H. ;
Flanders, Adam E. ;
Prevedello, Luciano M. ;
Langlotz, Curtis P. .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2019, 1 (02)
[9]   Multiparametric imaging with heterogeneous radiofrequency fields [J].
Cloos, Martijn A. ;
Knoll, Florian ;
Zhao, Tiejun ;
Block, Kai T. ;
Bruno, Mary ;
Wiggins, Graham C. ;
Sodickson, Daniel K. .
NATURE COMMUNICATIONS, 2016, 7
[10]  
Cohen O, 2019, ISMRM 27 ANN M EXH M