Diffusion model-based text-guided enhancement network for medical image segmentation

被引:7
作者
Dong, Zhiwei [1 ]
Yuan, Genji [1 ]
Hua, Zhen [1 ]
Li, Jinjiang [2 ]
机构
[1] Shandong Technol & Business Univ, Sch Comp Sci & Technol, Yantai, Peoples R China
[2] Shandong Technol & Business Univ, Sch Informat & Elect Engn, Yantai, Peoples R China
基金
中国国家自然科学基金;
关键词
Denoising diffusion model; Text attention mechanism; Guided feature enhancement; Medical image segmentation; CONVOLUTIONAL NEURAL-NETWORK; CELL-NUCLEI; MISDIAGNOSIS; CLASSIFICATION;
D O I
10.1016/j.eswa.2024.123549
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, denoising diffusion models have achieved remarkable success in generating pixel-level representations with semantic values for image generation modeling. In this study, we propose a novel end -toend framework, called TGEDiff, focusing on medical image segmentation. TGEDiff fuses a textual attention mechanism with the diffusion model by introducing an additional auxiliary categorization task to guide the diffusion model with textual information to generate excellent pixel-level representations. To overcome the limitation of limited perceptual fields for independent feature encoders within the diffusion model, we introduce a multi-kernel excitation module to extend the model's perceptual capability. Meanwhile, a guided feature enhancement module is introduced in Denoising-UNet to focus the model's attention on important regions and attenuate the influence of noise and irrelevant background in medical images. We critically evaluated TGEDiff on three datasets (Kvasir-SEG, Kvasir-Sessile, and GLaS), and TGEDiff achieved significant improvements over the state -of -the -art approach on all three datasets, with F1 scores and mIoU improving by 0.88% and 1.09%, 3.21% and 3.43%, respectively, 1.29% and 2.34%. These data validate that TGEDiff has excellent performance in medical image segmentation. TGEDiff is expected to facilitate accurate diagnosis and treatment of medical diseases through more precise deconvolutional structural segmentation.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] An Enhanced Feature Extraction Network for Medical Image Segmentation
    Gao, Yan
    Che, Xiangjiu
    Xu, Huan
    Bie, Mei
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [32] A context hierarchical integrated network for medical image segmentation?
    Xie, Xiwang
    Pan, Xipeng
    Zhang, Weidong
    An, Jubai
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 101
  • [33] An efficient neural network based method for medical image segmentation
    Torbati, Nima
    Ayatollahi, Ahmad
    Kermani, Ali
    COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 44 : 76 - 87
  • [34] Graph- and transformer-guided boundary aware network for medical image segmentation
    Xu, Shanshan
    Duan, Lianhong
    Zhang, Yang
    Zhang, Zhicheng
    Sun, Tiansheng
    Tian, Lixia
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 242
  • [35] Boundary-guided feature integration network with hierarchical transformer for medical image segmentation
    Wang, Fan
    Wang, Bo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 8955 - 8969
  • [36] Boundary-guided feature integration network with hierarchical transformer for medical image segmentation
    Fan Wang
    Bo Wang
    Multimedia Tools and Applications, 2024, 83 : 8955 - 8969
  • [37] Medical image segmentation using boundary-enhanced guided packet rotation dual attention decoder network
    Lu, Hongchun
    Tian, Shengwei
    Yu, Long
    Xing, Yan
    Cheng, Junlong
    Liu, Lu
    TECHNOLOGY AND HEALTH CARE, 2022, 30 (01) : 129 - 143
  • [38] A coarse-to-fine full attention guided capsule network for medical image segmentation
    Wan, Jingjing
    Yue, Suyang
    Ma, Juan
    Ma, Xinggang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 76
  • [39] A new end-to-end network model for medical image segmentation
    Chen, Hongyou
    Xu, Zengyong
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2021, 24 (02): : 207 - 213
  • [40] Medical image segmentation with transform and moment based features and incremental supervised neural network
    Iscan, Zafer
    Yuksel, Ayhan
    Dokur, Zuemray
    Korurek, Mehmet
    Olmez, Tamer
    DIGITAL SIGNAL PROCESSING, 2009, 19 (05) : 890 - 901