Joint Task Allocation and Resource Optimization for Blockchain Enabled Collaborative Edge Computing

被引:0
作者
Xu, Wenjing [1 ,2 ]
Wang, Wei [1 ,2 ]
Li, Zuguang [1 ,2 ]
Wu, Qihui [1 ,2 ]
Wang, Xianbin [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 211106, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Dynam Cognit Syst Electromagnet Spectrum, Nanjing 211106, Peoples R China
[3] Western Univ, Dept Elect & Comp Engn, London, ON, Canada
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
blockchain; collaborative edge computing; resource optimization; task allocation; EFFICIENT; NETWORKS; LATENCY; CLOUD;
D O I
10.23919/JCC.ea.2022-0748.202401
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks. However, edge computing servers (ECSs) from different operators may not trust each other, and thus the incentives for collaboration cannot be guaranteed. In this paper, we propose a consortium blockchain enabled collaborative edge computing framework, where users can offload computing tasks to ECSs from different operators. To minimize the total delay of users, we formulate a joint task offloading and resource optimization problem, under the constraint of the computing capability of each ECS. We apply the Tammer decomposition method and heuristic optimization algorithms to obtain the optimal solution. Finally, we propose a reputation based node selection approach to facilitate the consensus process, and also consider a completion time based primary node selection to avoid monopolization of certain edge node and enhance the security of the blockchain. Simulation results validate the effectiveness of the proposed algorithm, and the total delay can be reduced by up to 40% compared with the non-cooperative case.
引用
收藏
页码:231 / 242
页数:12
相关论文
共 35 条
[1]   iRAF: A Deep Reinforcement Learning Approach for Collaborative Mobile Edge Computing IoT Networks [J].
Chen, Jienan ;
Chen, Siyu ;
Wang, Qi ;
Cao, Bin ;
Feng, Gang ;
Hu, Jianhao .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (04) :7011-7024
[2]   Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing [J].
Chen, Xu ;
Jiao, Lei ;
Li, Wenzhong ;
Fu, Xiaoming .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2016, 24 (05) :2827-2840
[3]   Dynamic task offloading for digital twin-empowered mobile edge computing via deep reinforcement learning [J].
Chen, Ying ;
Gu, Wei ;
Xu, Jiajie ;
Zhang, Yongchao ;
Min, Geyong .
CHINA COMMUNICATIONS, 2023, 20 (11) :164-175
[4]   Efficient and Secure Multi-User Multi-Task Computation Offloading for Mobile-Edge Computing in Mobile IoT Networks [J].
Elgendy, Ibrahim A. ;
Zhang, Wei-Zhe ;
Zeng, Yiming ;
He, Hui ;
Tian, Yu-Chu ;
Yang, Yuanyuan .
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020, 17 (04) :2410-2422
[5]   Cooperative Computation Offloading and Resource Allocation for Blockchain-Enabled Mobile-Edge Computing: A Deep Reinforcement Learning Approach [J].
Feng, Jie ;
Yu, F. Richard ;
Pei, Qingqi ;
Chu, Xiaoli ;
Du, Jianbo ;
Zhu, Li .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07) :6214-6228
[6]  
He, 2021, IEEE T SERV COMPUT
[7]   Trusted resource allocation based on proof-of-reputation consensus mechanism for edge computing [J].
Hu, Qiaohong ;
Cheng, Hongju ;
Zhang, Xiaoqi ;
Lin, Chengkuan .
PEER-TO-PEER NETWORKING AND APPLICATIONS, 2022, 15 (01) :444-460
[8]   A Secure Multi-Tier Mobile Edge Computing Model for Data Processing Offloading Based on Degree of Trust [J].
Jose Mora-Gimeno, Francisco ;
Mora-Mora, Higinio ;
Marcos-Jorquera, Diego ;
Volckaert, Bruno .
SENSORS, 2018, 18 (10)
[9]   Enabling Localized Peer-to-Peer Electricity Trading Among Plug-in Hybrid Electric Vehicles Using Consortium Blockchains [J].
Kang, Jiawen ;
Yu, Rong ;
Huang, Xumin ;
Maharjan, Sabita ;
Zhang, Yan ;
Hossain, Ekram .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (06) :3154-3164
[10]  
Le Yuwei, 2022, 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), P155, DOI 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics55523.2022.00061