SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence

被引:93
|
作者
Fang, Wei [1 ,2 ,3 ]
Chen, Yanqi [1 ,2 ]
Ding, Jianhao [1 ]
Yu, Zhaofei [4 ]
Masquelier, Timothee [5 ]
Chen, Ding [2 ,6 ]
Huang, Liwei [1 ,2 ]
Zhou, Huihui [2 ]
Li, Guoqi [7 ,8 ]
Tian, Yonghong [1 ,2 ,3 ]
机构
[1] Peking Univ, Sch Comp Sci, Beijing, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
[3] Peking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Beijing, Peoples R China
[4] Peking Univ, Inst Artificial Intelligence, Beijing, Peoples R China
[5] Univ Toulouse 3, Ctr Rech Cerveau & Cognit CERCO, CNRS, UMR5549, Toulouse, France
[6] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai, Peoples R China
[7] Chinese Acad Sci, Inst Automation, Beijing, Peoples R China
[8] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
来源
SCIENCE ADVANCES | 2023年 / 9卷 / 40期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
DEEP NEURAL-NETWORKS; CLASSIFICATION; BACKPROPAGATION; ACCURATE; NEURONS;
D O I
10.1126/sciadv.adi1480
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency by introducing neural dynamics and spike properties. As the emerging spiking deep learning paradigm attracts increasing interest, traditional programming frameworks cannot meet the demands of the automatic differentiation, parallel computation acceleration, and high integration of processing neuromorphic datasets and deployment. In this work, we present the SpikingJelly framework to address the aforementioned dilemma. We contribute a full-stack toolkit for preprocessing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips. Compared to existing methods, the training of deep SNNs can be accelerated 11x, and the superior extensibility and flexibility of SpikingJelly enable users to accelerate custom models at low costs through multilevel inheritance and semiautomatic code generation. SpikingJelly paves the way for synthesizing truly energy-efficient SNN-based machine intelligence systems, which will enrich the ecology of neuromorphic computing.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] AN OPEN-SOURCE LEARNING PLATFORM APPLIED TO LEARN EARTH SCIENCES
    Pozo-Antonio, J. S.
    Fiorucci, M. P.
    Lopez, A. J.
    INTED2015: 9TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE, 2015, : 7136 - 7145
  • [22] iEDA: An Open-source infrastructure of EDA
    Li, Xingquan
    Huang, Zengrong
    Tao, Simin
    Huang, Zhipeng
    Zhuang, Chunan
    Wang, Hao
    Li, Yifan
    Qiu, Yihang
    Luo, Guojie
    Li, Huawei
    Shen, Haihua
    Chen, Mingyu
    Bu, Dongbo
    Zhu, Wenxing
    Cai, Ye
    Xiong, Xiaoming
    Jiang, Ying
    Heng, Yi
    Zhang, Peng
    Yu, Bei
    Xie, Biwei
    Bao, Yungang
    29TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC 2024, 2024, : 77 - 82
  • [23] ImJoy: an open-source computational platform for the deep learning era
    Ouyang, Wei
    Mueller, Florian
    Hjelmare, Martin
    Lundberg, Emma
    Zimmer, Christophe
    NATURE METHODS, 2019, 16 (12) : 1199 - 1200
  • [24] ImJoy: an open-source computational platform for the deep learning era
    Wei Ouyang
    Florian Mueller
    Martin Hjelmare
    Emma Lundberg
    Christophe Zimmer
    Nature Methods, 2019, 16 : 1199 - 1200
  • [25] KepriSNS: A Business SNS Platform Based on Open-Source
    Kim, Dongwook
    Chae, Changhun
    Jung, Namjoon
    CONVERGENCE AND HYBRID INFORMATION TECHNOLOGY, 2011, 206 : 363 - 370
  • [26] Platform based on open-source cores for industrial applications
    Bolado, M
    Posadas, H
    Castillo, J
    Huerta, P
    Sánchez, P
    Sánchez, C
    Fouren, H
    Blasco, F
    DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE AND EXHIBITION, VOLS 1 AND 2, PROCEEDINGS, 2004, : 1014 - 1019
  • [27] SNIB: Improving Spike-Based Machine Learning Using Nonlinear Information Bottleneck
    Yang, Shuangming
    Chen, Badong
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (12): : 7852 - 7863
  • [28] CarDreamer: Open-Source Learning Platform for World-Model-Based Autonomous Driving
    Gao, Dechen
    Cai, Shuangyu
    Zhou, Hanchu
    Wang, Hang
    Soltani, Iman
    Zhang, Junshan
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (03): : 2866 - 2875
  • [29] SPAIC: A Spike-Based Artificial Intelligence Computing Framework
    Hong, Chaofei
    Yuan, Mengwen
    Zhang, Mengxiao
    Wang, Xiao
    Zhang, Chengjun
    Wang, Jiaxin
    Pan, Gang
    Tang, Huajin
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2024, 19 (01) : 51 - 65
  • [30] Pluggable scheduling on an open-source based volunteer computing infrastructure
    Dinis, Guilherme, Jr.
    Zakaria, Nordin
    Naono, Ken
    2014 INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCOINS), 2014,