SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence

被引:93
作者
Fang, Wei [1 ,2 ,3 ]
Chen, Yanqi [1 ,2 ]
Ding, Jianhao [1 ]
Yu, Zhaofei [4 ]
Masquelier, Timothee [5 ]
Chen, Ding [2 ,6 ]
Huang, Liwei [1 ,2 ]
Zhou, Huihui [2 ]
Li, Guoqi [7 ,8 ]
Tian, Yonghong [1 ,2 ,3 ]
机构
[1] Peking Univ, Sch Comp Sci, Beijing, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
[3] Peking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Beijing, Peoples R China
[4] Peking Univ, Inst Artificial Intelligence, Beijing, Peoples R China
[5] Univ Toulouse 3, Ctr Rech Cerveau & Cognit CERCO, CNRS, UMR5549, Toulouse, France
[6] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai, Peoples R China
[7] Chinese Acad Sci, Inst Automation, Beijing, Peoples R China
[8] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
来源
SCIENCE ADVANCES | 2023年 / 9卷 / 40期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
DEEP NEURAL-NETWORKS; CLASSIFICATION; BACKPROPAGATION; ACCURATE; NEURONS;
D O I
10.1126/sciadv.adi1480
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency by introducing neural dynamics and spike properties. As the emerging spiking deep learning paradigm attracts increasing interest, traditional programming frameworks cannot meet the demands of the automatic differentiation, parallel computation acceleration, and high integration of processing neuromorphic datasets and deployment. In this work, we present the SpikingJelly framework to address the aforementioned dilemma. We contribute a full-stack toolkit for preprocessing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips. Compared to existing methods, the training of deep SNNs can be accelerated 11x, and the superior extensibility and flexibility of SpikingJelly enable users to accelerate custom models at low costs through multilevel inheritance and semiautomatic code generation. SpikingJelly paves the way for synthesizing truly energy-efficient SNN-based machine intelligence systems, which will enrich the ecology of neuromorphic computing.
引用
收藏
页数:18
相关论文
共 190 条
  • [1] Abad Gorka, 2022, CCS '22: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, P3315, DOI 10.1145/3548606.3563532
  • [2] Abad G, 2024, Arxiv, DOI [arXiv:2302.06279, 10.48550/arXiv.2302.06279]
  • [3] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [4] A Low Power, Fully Event-Based Gesture Recognition System
    Amir, Arnon
    Taba, Brian
    Berg, David
    Melano, Timothy
    McKinstry, Jeffrey
    Di Nolfo, Carmelo
    Nayak, Tapan
    Andreopoulos, Alexander
    Garreau, Guillaume
    Mendoza, Marcela
    Kusnitz, Jeff
    Debole, Michael
    Esser, Steve
    Delbruck, Tobi
    Flickner, Myron
    Modha, Dharmendra
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 7388 - 7397
  • [5] Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, 10.48550/arXiv.1409.0473, DOI 10.48550/ARXIV.1409.0473]
  • [6] Barchid S, 2022, Arxiv, DOI [arXiv:2206.06506, 10.48550/arXiv.2206.06506]
  • [7] Nengo: a Python']Python tool for building large-scale functional brain models
    Bekolay, Trevor
    Bergstra, James
    Hunsberger, Eric
    DeWolf, Travis
    Stewart, Terrence C.
    Rasmussen, Daniel
    Choo, Xuan
    Voelker, Aaron Russell
    Eliasmith, Chris
    [J]. FRONTIERS IN NEUROINFORMATICS, 2014, 7
  • [8] Bellec G, 2018, ADV NEUR IN, V31
  • [9] The Open-Closed Principle of Modern Machine Learning Frameworks
    Ben Braiek, Houssem
    Khomh, Foutse
    Adams, Bram
    [J]. 2018 IEEE/ACM 15TH INTERNATIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES (MSR), 2018, : 353 - 363
  • [10] Bengio Y, 2013, Arxiv, DOI arXiv:1308.3432