Measurement of EDMed surfaces roughness using convolutional neural network

被引:1
|
作者
Kumar, Amit [1 ,3 ]
Pradhan, Mohan Kumar [1 ]
Das, Raja [2 ]
机构
[1] Maulana Azad Natl Inst Technol, Bhopal, Madhya Pradesh, India
[2] VIT Univ, Dept Math, Vellore, Tamil Nadu, India
[3] Maulana Azad Natl Inst Technol, Dept Mech Engn, Link Rd 3, Bhopal 462003, Madhya Pradesh, India
关键词
Convolution neural network; Gaussian distribution; image processing; loss function; machined surface; surface roughness; MACHINE VISION; SYSTEM; PARAMETERS;
D O I
10.1177/09544089231190271
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In addition to dimensions, surface roughness measurement is crucial in every manufacturing. In this study, a trustworthy method for characterising the surface roughness of electrical discharge machined surfaces was developed using a convolutional neural network. Since feature extraction is incorporated into the convolution process of the network, this technique eliminates it. Images of EDMed surfaces were taken using a mobile camera. MATLAB software was used to process a signal vector that was created from the intensity of the picture pixels. A database of specimens with recorded surface roughness values was created. When samples with known surface roughness are given, the proposed technique is a strong contender for real-time surface roughness measurement. The generated predicted values are compared with the measured values acquired from a profilometer using a stylus. The applicability and accuracy of five loss functions are considered before they are chosen and examined for the prediction models. The accuracy and performance of this digital model suggest that it has the capability to assess the surface roughness very well.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Software Defect Prediction using Convolutional Neural Network
    Wongpheng, Kittisak
    Visutsak, Porawat
    35TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2020), 2020, : 240 - 243
  • [22] Automated Fingerlings Counting Using Convolutional Neural Network
    Lainez, Sheryl May D.
    Gonzales, Dennis B.
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS (ICCCS 2019), 2019, : 67 - 72
  • [23] On Luminance Noise Removal Using Convolutional Neural Network
    Tsikalovsky, Dmitry
    Firsov, Georgii
    PROCEEDINGS OF THE 2021 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (ELCONRUS), 2021, : 710 - 713
  • [24] Calf Posture Recognition Using Convolutional Neural Network
    Tan Chen Tung
    Khairuddin, Uswah
    Shapiai, Mohd Ibrahim
    Nor, Norhariani Md
    Hiew, Mark Wen Han
    Suhaimie, Nurul Aisyah Mohd
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 1493 - 1508
  • [25] Quality Assessment of Mangoes using Convolutional Neural Network
    Puno, John Carlo, V
    Billones, Robert Kerwin D.
    Bandala, Argel A.
    Dadios, Elmer P.
    Calilung, Edwin J.
    Joaquin, Arlene C.
    PROCEEDINGS OF THE IEEE 2019 9TH INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) ROBOTICS, AUTOMATION AND MECHATRONICS (RAM) (CIS & RAM 2019), 2019, : 491 - 495
  • [26] Classification of Histopathological Images Using Convolutional Neural Network
    Hatipoglu, Nuh
    Bilgin, Gokhan
    2014 4TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2014, : 295 - 300
  • [27] Blind inpainting using the fully convolutional neural network
    Nian Cai
    Zhenghang Su
    Zhineng Lin
    Han Wang
    Zhijing Yang
    Bingo Wing-Kuen Ling
    The Visual Computer, 2017, 33 : 249 - 261
  • [28] Skin Cancer Detection Using Convolutional Neural Network
    Hasan, Mahamudul
    Das Barman, Surajit
    Islam, Samia
    Reza, Ahmed Wasif
    ICCAI '19 - PROCEEDINGS OF THE 2019 5TH INTERNATIONAL CONFERENCE ON COMPUTING AND ARTIFICIAL INTELLIGENCE, 2019, : 254 - 258
  • [29] Fingerprint Classification using a Deep Convolutional Neural Network
    Pandya, Bhavesh
    Cosma, Georgina
    Alani, Ali A.
    Taherkhani, Aboozar
    Bharadi, Vinayak
    McGinnity, T. M.
    2018 4TH INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM2018), 2018, : 86 - 91
  • [30] Detection of Strawberry Diseases Using a Convolutional Neural Network
    Xiao, Jia-Rong
    Chung, Pei-Che
    Wu, Hung-Yi
    Phan, Quoc-Hung
    Yeh, Jer-Liang Andrew
    Hou, Max Ti-Kuang
    PLANTS-BASEL, 2021, 10 (01): : 1 - 14