Low-Pressure Cold Spray Deposition Window Derived from a One-Dimensional Analytical Model

被引:2
作者
Martinez-Flores, Monica [1 ]
Cervantes-Cabello, Jose Javier [2 ]
Barba-Pingarron, Arturo [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest Mat, Circuito Ext S-N, Mexico City 04510, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ingn, Ctr Ingn Avanzada, Div Ingn Mecan & Ind, Circuito Ext S-N, Mexico City 04510, Mexico
[3] Univ Nacl Autonoma Mexico, Fac Ingn, Ctr Ingn Superficies & Acabados CENISA, Div Ingn Mecan & Ind, Circuito Ext S-N, Mexico City 04510, Mexico
关键词
low-pressure cold spray; analytical modeling; process parameters; zinc coatings; deposition window;
D O I
10.3390/coatings13061015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Low-pressure cold spray (LPCS) coating deposition requires the consideration of multiple parameters to define spraying conditions. The use of a parameter window provides an integral approach to achieving this goal. In this work, an LPCS deposition window for zinc powders was obtained through the development of a one-dimensional analytical model of fluid and particle interaction. The model considers powder particle injection downstream of the nozzle and follows the particle from injection to impact. The model equations relate the particle velocity (v(p)) to the process parameters, such as the gas pressure ( P-0) and temperature ( T-0), particle size ( d(p)) and stand-off distance (SoD). The values of the particle velocity ( v(p)) at the nozzle exit and during the "free-jet", as well as the drag coefficient (C-d), were calculated using experimental spraying conditions for Cu and Al that have previously been documented in LPCS studies. The model's accuracy and applicability to other materials were confirmed upon comparing the results with those in the aforementioned studies. Moreover, the definition of the model equations allowed for the identification of three new parameters: (gamma) the maximum ideal particle velocity, (beta) the capacity to accelerate the powder particle inside the nozzle and (alpha) the deceleration of the particle in the free-jet zone. These parameters have not previously been published and allow for comparative evaluation between LPCS processes.
引用
收藏
页数:17
相关论文
共 21 条
[1]   Cold spraying - A materials perspective [J].
Assadi, H. ;
Kreye, H. ;
Gaertner, F. ;
Klassen, T. .
ACTA MATERIALIA, 2016, 116 :382-407
[2]   On Parameter Selection in Cold Spraying [J].
Assadi, H. ;
Schmidt, T. ;
Richter, H. ;
Kliemann, J. -O. ;
Binder, K. ;
Gaertner, F. ;
Klassen, T. ;
Kreye, H. .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2011, 20 (06) :1161-1176
[3]   Interfacial heating during low-pressure cold-gas dynamic spraying of aluminum coatings [J].
Dewar, M. P. ;
McDonald, A. G. ;
Gerlich, A. P. .
JOURNAL OF MATERIALS SCIENCE, 2012, 47 (01) :184-198
[4]  
Helfritch D., 2008, A model study of powder particle size effects in cold spray deposition
[5]  
Hussain T., 2015, Modern Cold Spray: Materials, Process, and Applications, DOI DOI 10.1007/978-3-319-16772-5_3
[6]   High Pressure Cold Sprayed (HPCS) and Low Pressure Cold Sprayed (LPCS) Coatings Prepared from OFHC Cu Feedstock: Overview from Powder Characteristics to Coating Properties [J].
Koivuluoto, Heli ;
Coleman, Andrew ;
Murray, Keith ;
Kearns, Martin ;
Vuoristo, Petri .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2012, 21 (05) :1065-1075
[7]   Supersonic and Hypersonic Drag Coefficients for a Sphere [J].
Loth, Eric ;
Daspit, John Tyler ;
Jeong, Michael ;
Nagata, Takayuki ;
Nonomura, Taku .
AIAA JOURNAL, 2021, 59 (08) :3261-3274
[8]  
Maev R., 2018, COLD SPRAY COATINGS, DOI [10.1007/978-3-319-67183-3_4, DOI 10.1007/978-3-319-67183-3_4]
[9]   Influence of cold spray parameters on the microstructures and residual stress of Zn coatings sprayed on mild steel [J].
Maledi, N. B. ;
Oladijo, O. P. ;
Botef, I. ;
Ntsoane, T. P. ;
Madiseng, A. ;
Moloisane, L. .
SURFACE & COATINGS TECHNOLOGY, 2017, 318 :106-113
[10]  
Martienssen W., 2006, SPRINGER HDB CONDENS