Full charge incorporation in ab initio simulations of two-dimensional semiconductor-based devices

被引:1
作者
Duflou, Rutger [1 ,2 ]
Houssa, Michel [1 ,2 ]
Afzalian, Aryan [1 ]
机构
[1] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
[2] Katholieke Univ Leuven, Semicond Phys Lab, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
关键词
Semiconductor device modelling; NEGF; 2D materials; Contact modelling; BULK;
D O I
10.1007/s10825-023-02055-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum transport simulations based on the non-equilibrium Green's function formalism require accurate integration of the charges in the system. We demonstrate our implementation of a full charge integration scheme, which automatically incorporates electronic screening effects and is predicted to incorporate interface charges more correctly than the simpler excess charge approach. We first show that under certain conditions the two approaches are equivalent, e.g., for single doping type purely semiconducting devices. We then demonstrate that for devices containing metals, the two approaches may sometimes demonstrate significantly different behavior.
引用
收藏
页码:1202 / 1214
页数:13
相关论文
共 28 条
[1]   Advanced DFT-NEGF Transport Techniques for Novel 2-D Material and Device Exploration Including HfS2/WSe2 van der Waals Heterojunction TFET and WTe2/WS2 Metal/Semiconductor Contact [J].
Afzalian, A. ;
Akhoundi, E. ;
Gaddemane, G. ;
Duflou, R. ;
Houssa, M. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (11) :5372-5379
[2]   Ab initio perspective of ultra-scaled CMOS from 2D-material fundamentals to dynamically doped transistors [J].
Afzalian, Aryan .
NPJ 2D MATERIALS AND APPLICATIONS, 2021, 5 (01)
[3]   Computationally efficient self-consistent born approximation treatments of phonon scattering for coupled-mode space non-equilibrium Green's function [J].
Afzalian, Aryan .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (09)
[4]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[5]  
Chhowalla M, 2016, NAT REV MATER, V1, DOI [10.1038/natrevmats2016.52, 10.1038/natrevmats.2016.52]
[6]   Explicit screening full band quantum transport model for semiconductor nanodevices [J].
Chu, Yuanchen ;
Sarangapani, Prasad ;
Charles, James ;
Klimeck, Gerhard ;
Kubis, Tillmann .
JOURNAL OF APPLIED PHYSICS, 2018, 123 (24)
[7]  
Datta S., 2005, Quantum transport: Atom to Transistor
[8]  
Duflou R., 2022, FUNDAMENTALS LOW RES, DOI [10.21203/rs.3.rs-2202758/v1, DOI 10.21203/RS.3.RS-2202758/V1]
[9]  
GALITSKII VM, 1958, SOV PHYS JETP-USSR, V7, P96
[10]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)