Group classification of the two-dimensional magnetogasdynamics equations in Lagrangian coordinates

被引:4
作者
Meleshko, Sergey V. [1 ,4 ]
Kaptsov, Evgenii I. [1 ]
Moyo, Sibusiso [2 ]
Webb, Gary M. [3 ]
机构
[1] Suranaree Univ Technol, Inst Sci, Sch Math, Nakhon Ratchasima, Thailand
[2] Stellenbosch Univ, Res Innovat & Postgrad Studies, Stellenbosch, South Africa
[3] Univ Alabama Huntsville, Ctr Space Plasma & Aeron Res, Huntsville, AL USA
[4] Suranaree Univ Technol, Inst Sci, Sch Math, Nakhon Ratchasima 30000, Thailand
基金
俄罗斯科学基金会;
关键词
Lagrangian coordinates; Lie point symmetries; magnetohydrodynamics; IDEAL; MAGNETOHYDRODYNAMICS;
D O I
10.1002/mma.9383
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper is devoted to the group classification of magnetogasdynamics equations in which dependent variables in Euler coordinates depend on time and two spatial coordinates. It is assumed that the continuum is inviscid and nonthermal polytropic gas with infinite electrical conductivity. The equations are considered in mass Lagrangian coordinates. Use of Lagrangian coordinates allows reducing number of dependent variables. The analysis presented in this article gives complete group classification of the studied equations. This analysis is necessary for constructing invariant solutions and conservation laws on the base of Noether's theorem.
引用
收藏
页码:15367 / 15390
页数:24
相关论文
共 50 条
  • [41] MONOLITHIC MULTIGRID METHODS FOR TWO-DIMENSIONAL RESISTIVE MAGNETOHYDRODYNAMICS
    Adler, James H.
    Benson, Thomas R.
    Cyr, Eric C.
    Maclachlan, Scott P.
    Tuminaro, Raymond S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01) : B1 - B24
  • [42] Broken ergodicity in two-dimensional homogeneous magnetohydrodynamic turbulence
    Shebalin, John V.
    PHYSICS OF PLASMAS, 2010, 17 (09)
  • [43] Analysis of cancellation exponents in two-dimensional Vlasov turbulence
    De Vita, G.
    Sorriso-Valvo, L.
    Valentini, F.
    Servidio, S.
    Primavera, L.
    Carbone, V.
    Veltri, P.
    PHYSICS OF PLASMAS, 2014, 21 (07)
  • [44] Two-dimensional accretion flow driven by the Poynting flux
    Lee, HK
    Park, J
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2004, 45 (06) : 1719 - 1724
  • [45] Two-dimensional MHD simulation of the Earth's magnetosphere
    Filawati, Siska
    Setiahadi, Bambang
    Subagyo, Bintoro A.
    ASTROPHYSICS AND SPACE SCIENCE, 2023, 368 (12)
  • [46] Two-dimensional MHD simulation of the Earth’s magnetosphere
    Siska Filawati
    Bambang Setiahadi
    Bintoro A. Subagyo
    Astrophysics and Space Science, 2023, 368
  • [47] Structure and computation of two-dimensional incompressible extended MHD
    Grasso, D.
    Tassi, E.
    Abdelhamid, H. M.
    Morrison, P. J.
    PHYSICS OF PLASMAS, 2017, 24 (01)
  • [48] Chaos in a Two-Dimensional Magneto-Hydrodynamic System
    Bagnoli, F.
    Rechtman, R.
    CELLULAR AUTOMATA, ACRI 2024, 2024, 14978 : 96 - 106
  • [49] Generalized Lagrangian Coordinates for Transport and Two-Phase Flows in Heterogeneous Anisotropic Porous Media
    F. Plouraboué
    A. Bergeon
    M. Azaïez
    Transport in Porous Media, 2001, 44 : 281 - 304
  • [50] A two-dimensional magnetohydrodynamic system: geometric decomposition and canonical reduction
    Rogers, Colin
    Schief, Wolfgang K.
    MECCANICA, 2023, 58 (06) : 1021 - 1029