Group classification of the two-dimensional magnetogasdynamics equations in Lagrangian coordinates

被引:4
作者
Meleshko, Sergey V. [1 ,4 ]
Kaptsov, Evgenii I. [1 ]
Moyo, Sibusiso [2 ]
Webb, Gary M. [3 ]
机构
[1] Suranaree Univ Technol, Inst Sci, Sch Math, Nakhon Ratchasima, Thailand
[2] Stellenbosch Univ, Res Innovat & Postgrad Studies, Stellenbosch, South Africa
[3] Univ Alabama Huntsville, Ctr Space Plasma & Aeron Res, Huntsville, AL USA
[4] Suranaree Univ Technol, Inst Sci, Sch Math, Nakhon Ratchasima 30000, Thailand
基金
俄罗斯科学基金会;
关键词
Lagrangian coordinates; Lie point symmetries; magnetohydrodynamics; IDEAL; MAGNETOHYDRODYNAMICS;
D O I
10.1002/mma.9383
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper is devoted to the group classification of magnetogasdynamics equations in which dependent variables in Euler coordinates depend on time and two spatial coordinates. It is assumed that the continuum is inviscid and nonthermal polytropic gas with infinite electrical conductivity. The equations are considered in mass Lagrangian coordinates. Use of Lagrangian coordinates allows reducing number of dependent variables. The analysis presented in this article gives complete group classification of the studied equations. This analysis is necessary for constructing invariant solutions and conservation laws on the base of Noether's theorem.
引用
收藏
页码:15367 / 15390
页数:24
相关论文
共 50 条
  • [31] STABILITY AND CONVERGENCE OF THE DIFFERENCE SCHEMES FOR EQUATIONS OF ISENTROPIC GAS DYNAMICS IN LAGRANGIAN COORDINATES
    Matus, Piotr
    Polyakov, Dmitry
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2012, 91 (105): : 137 - 153
  • [32] Global well-posedness of two-dimensional magneto-micropolar equations with partial dissipation
    Guo, Yana
    Shang, Haifeng
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 313 : 392 - 407
  • [33] Global weak solutions to a two-dimensional compressible MHD equations of viscous non-resistive fluids
    Li, Yang
    Sun, Yongzhong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (06) : 3827 - 3851
  • [34] Three-dimensional solutions of the magnetohydrostatic equations for rigidly rotating magnetospheres in cylindrical coordinates
    Wilson, F.
    Neukirch, T.
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2018, 112 (01) : 74 - 95
  • [35] On a class of two-dimensional incomplete Riemann solvers
    Gallardo, Jose M.
    Schneider, Kleiton A.
    Castro, Manuel J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 386 : 541 - 567
  • [36] A lattice boltzmann model for two-dimensional magnetohydrodynamics
    LACS and LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, PO Box 9804, Beijing, China
    不详
    Chin. Phys. Lett., 2006, 10 (2823-2826): : 2823 - 2826
  • [37] TWO-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS OF BARRED GALAXIES
    Kim, Woong-Tae
    Stone, James M.
    ASTROPHYSICAL JOURNAL, 2012, 751 (02)
  • [38] Numerical investigation on the influence of gas-particle two-way coupling to the shock fluid in the two-dimensional Lagrangian framework
    Chen Da-Wei
    Sun Hai-Quan
    Wang Pei
    Yu Xi-Jun
    Ma Dong-Jun
    ACTA PHYSICA SINICA, 2016, 65 (08)
  • [39] Two- and three-dimensional magnetic reconnection observed in the Eulerian-Lagrangian analysis of magnetohydrodynamics equations (vol 78, 066315, 2008)
    Ohkitani, K.
    Constantin, P.
    PHYSICAL REVIEW E, 2009, 80 (06):
  • [40] A study of two-dimensional particle simulation of magnetic reconnection
    Guo, J
    Lu, QM
    Wang, S
    Dou, XK
    CHINESE ASTRONOMY AND ASTROPHYSICS, 2004, 28 (01) : 58 - 66