Group classification of the two-dimensional magnetogasdynamics equations in Lagrangian coordinates

被引:4
作者
Meleshko, Sergey V. [1 ,4 ]
Kaptsov, Evgenii I. [1 ]
Moyo, Sibusiso [2 ]
Webb, Gary M. [3 ]
机构
[1] Suranaree Univ Technol, Inst Sci, Sch Math, Nakhon Ratchasima, Thailand
[2] Stellenbosch Univ, Res Innovat & Postgrad Studies, Stellenbosch, South Africa
[3] Univ Alabama Huntsville, Ctr Space Plasma & Aeron Res, Huntsville, AL USA
[4] Suranaree Univ Technol, Inst Sci, Sch Math, Nakhon Ratchasima 30000, Thailand
基金
俄罗斯科学基金会;
关键词
Lagrangian coordinates; Lie point symmetries; magnetohydrodynamics; IDEAL; MAGNETOHYDRODYNAMICS;
D O I
10.1002/mma.9383
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper is devoted to the group classification of magnetogasdynamics equations in which dependent variables in Euler coordinates depend on time and two spatial coordinates. It is assumed that the continuum is inviscid and nonthermal polytropic gas with infinite electrical conductivity. The equations are considered in mass Lagrangian coordinates. Use of Lagrangian coordinates allows reducing number of dependent variables. The analysis presented in this article gives complete group classification of the studied equations. This analysis is necessary for constructing invariant solutions and conservation laws on the base of Noether's theorem.
引用
收藏
页码:15367 / 15390
页数:24
相关论文
共 50 条
  • [21] Conservation laws of the two-dimensional gas dynamics equations
    Kaptsov, E., I
    Meleshko, S., V
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 112 : 126 - 132
  • [22] Trochoidal Solutions to the Incompressible Two-Dimensional Euler Equations
    Adrian Constantin
    Walter A. Strauss
    Journal of Mathematical Fluid Mechanics, 2010, 12 : 181 - 201
  • [23] A Two-Dimensional Third-Order CESE Scheme for Ideal MHD Equations
    Zhou, Yufen
    Feng, Xueshang
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2023, 34 (01) : 94 - 115
  • [24] Asymptotic profiles of solutions to the two-dimensional incompressible magneto-micropolar equations
    Ye, Xiuping
    Lin, Xueyun
    APPLICABLE ANALYSIS, 2024,
  • [25] Trochoidal Solutions to the Incompressible Two-Dimensional Euler Equations
    Constantin, Adrian
    Strauss, Walter A.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2010, 12 (02) : 181 - 201
  • [26] Shallow water equations in Lagrangian coordinates: Symmetries, conservation laws and its preservation in difference models
    Dorodnitsyn, V. A.
    Kaptsov, E., I
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 89 (89):
  • [27] The regularity of solutions of reaction-diffusion equations via Lagrangian coordinates
    Shmarev, Sergei I.
    Vazquez, Juan L.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1996, 3 (04): : 465 - 497
  • [28] Conservative invariant finite-difference schemes for the modified shallow water equations in Lagrangian coordinates
    Kaptsov, Evgeniy I.
    Dorodnitsyn, Vladimir A.
    Meleshko, Sergey V.
    STUDIES IN APPLIED MATHEMATICS, 2022, 149 (03) : 729 - 761
  • [29] The Lagrangian coordinate system and what it means for two-dimensional crowd flow models
    van Wageningen-Kessels, Femke
    Leclercq, Ludovic
    Daamen, Winnie
    Hoogendoorn, Serge P.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 443 : 272 - 285
  • [30] Numerical solution for two-dimensional partial differential equations using SM's method
    Mastoi, Sanaullah
    Ganie, Abdul Hamid
    Saeed, Abdulkafi Mohammed
    Ali, Umair
    Rajput, Umair Ahmed
    Mior Othman, Wan Ainun
    OPEN PHYSICS, 2022, 20 (01): : 142 - 154