Group classification of the two-dimensional magnetogasdynamics equations in Lagrangian coordinates

被引:4
|
作者
Meleshko, Sergey V. [1 ,4 ]
Kaptsov, Evgenii I. [1 ]
Moyo, Sibusiso [2 ]
Webb, Gary M. [3 ]
机构
[1] Suranaree Univ Technol, Inst Sci, Sch Math, Nakhon Ratchasima, Thailand
[2] Stellenbosch Univ, Res Innovat & Postgrad Studies, Stellenbosch, South Africa
[3] Univ Alabama Huntsville, Ctr Space Plasma & Aeron Res, Huntsville, AL USA
[4] Suranaree Univ Technol, Inst Sci, Sch Math, Nakhon Ratchasima 30000, Thailand
基金
俄罗斯科学基金会;
关键词
Lagrangian coordinates; Lie point symmetries; magnetohydrodynamics; IDEAL; MAGNETOHYDRODYNAMICS;
D O I
10.1002/mma.9383
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper is devoted to the group classification of magnetogasdynamics equations in which dependent variables in Euler coordinates depend on time and two spatial coordinates. It is assumed that the continuum is inviscid and nonthermal polytropic gas with infinite electrical conductivity. The equations are considered in mass Lagrangian coordinates. Use of Lagrangian coordinates allows reducing number of dependent variables. The analysis presented in this article gives complete group classification of the studied equations. This analysis is necessary for constructing invariant solutions and conservation laws on the base of Noether's theorem.
引用
收藏
页码:15367 / 15390
页数:24
相关论文
共 50 条