Existence of positive solutions for a class of p-Laplacian type generalized quasilinear Schrodinger equations with critical growth and potential vanishing at infinity

被引:2
作者
Li, Zhen [1 ]
机构
[1] Jiangxi Tech Coll Mfg, Nanchang 330095, Jiangxi, Peoples R China
关键词
generalized quasilinear Schr?dinger equation; positive solutions; critical growth; p-Laplacian; GROUND-STATE SOLUTIONS; SOLITON-SOLUTIONS; ELLIPTIC-EQUATIONS; NODAL SOLUTIONS;
D O I
10.14232/ejqtde.2023.1.3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of positive solutions for the following generalized quasilinear Schrodinger equation- div(gp(u) |V u |p-2V u) + gp-1(u)g '(u) | V u |p + V(x) | u |p-2u = K(x)f(u) + Q(x)g(u)|G(u) |p*-2G(u), x E RN,where N > 3, 1 < p < N, p* = N p N-p , g E C1(R,R+), V(x) and K(x) are positive con-tinuous functions and G(u) = f0u g(t)dt. By using a change of variable, we obtain the existence of positive solutions for this problem by using the Mountain Pass Theorem. Our results generalize some existing results.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 46 条
[1]   Existence of solutions for a class of nonlinear Schrodinger equations with potential vanishing at infinity [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :1977-1991
[2]  
Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]   Existence of least energy positive, negative and nodal solutions for a class of p&q-problems with potentials vanishing at infinity [J].
Barile, Sara ;
Figueiredo, Giovany Malcher .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (02) :1205-1233
[5]   NONLINEAR ELECTROMAGNETIC-SPIN WAVES [J].
BASS, FG ;
NASONOV, NN .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 189 (04) :165-223
[6]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[7]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[8]   Existence and asymptotic behavior of standing wave solutions for a class of generalized quasilinear Schrodinger equations with critical Sobolev exponents [J].
Chen, Jianhua ;
Huang, Xianjiu ;
Qin, Dongdong ;
Cheng, Bitao .
ASYMPTOTIC ANALYSIS, 2020, 120 (3-4) :199-248
[9]   Existence and Concentration Behavior of Ground State Solutions for a Class of Generalized Quasilinear Schrodinger Equations in Double-struck capital RN [J].
Chen, Jianhua ;
Huang, Xianjiu ;
Cheng, Bitao ;
Tang, Xianhua .
ACTA MATHEMATICA SCIENTIA, 2020, 40 (05) :1495-1524
[10]  
Chen ST, 2016, Z ANGEW MATH PHYS, V67, DOI 10.1007/s00033-016-0695-2