Existence and multiplicity of solutions to p-Laplacian equations on graphs

被引:6
作者
Shao, Mengqiu [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Jining 273165, Shandong, Peoples R China
来源
REVISTA MATEMATICA COMPLUTENSE | 2024年 / 37卷 / 01期
关键词
p-Laplacian equation; Locally finite graph; Multiple solutions; Variational methods; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS;
D O I
10.1007/s13163-022-00452-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence of multiple solutions to the nonlinear p Laplacian equation -delta(p)u + h(x)|u|(p-2)u = f(x,u) +g(x)on the locally finite graph G, where delta(p) is the discrete p-Laplacian on graphs, p >= 2. Under more general conditions, we prove that the p-Laplacian equation admits at least two nontrivial different solutions by using the variational methods and the new analytical techniques. Our results extend some related works.
引用
收藏
页码:185 / 203
页数:19
相关论文
共 24 条
[1]   On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in RN [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) :1288-1311
[2]   Multiple positive solutions for a nonlinear Schrodinger equation [J].
Bartsch, T ;
Wang, ZQ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (03) :366-384
[3]  
Bose N.K., 1996, Neural Network Fundamentals with Graphs, Algorithms, and Applications
[4]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[5]  
Cao DM, 1996, P ROY SOC EDINB A, V126, P443
[6]  
Costa DG., 2007, INVITATION VARIATION, DOI DOI 10.1007/978-0-8176-4536-6
[7]   ON THE EXISTENCE OF POSITIVE ENTIRE SOLUTIONS OF A SEMILINEAR ELLIPTIC EQUATION [J].
DING, WY ;
NI, WM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 91 (04) :283-308
[8]   Multiplicity of positive solutions of a nonlinear Schrodinger equation [J].
Ding, YH ;
Tanaka, K .
MANUSCRIPTA MATHEMATICA, 2003, 112 (01) :109-135
[9]   The pth Kazdan-Warner equation on graphs [J].
Ge, Huabin .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (06)
[10]   A p-TH YAMABE EQUATION ON GRAPH [J].
Ge, Huabin .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (05) :2219-2224