Existence and regularity results for a class of parabolic problems with double phase flux of variable growth

被引:5
作者
Arora, Rakesh [1 ]
Shmarev, Sergey [2 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, India
[2] Univ Oviedo, Dept Matemat, c-Federico Garcia 18, Oviedo 33007, Spain
关键词
Double phase parabolic problem; Existence and uniqueness; Global higher integrability of the gradient; Musielak-Orlicz spaces; Second-order regularity; HIGHER INTEGRABILITY; EQUATIONS; SYSTEMS; SPACES;
D O I
10.1007/s13398-022-01346-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the homogeneous Dirichlet problem for the equation u(t) - div (F (z, & nabla;u) & nabla;u) = f, z= (x, t) is an element of Q(T) = omega x (0,T), where omega subset of R-N, is a bounded domain with & part;omega is an element of C-2, and F (z, xi) = a(z)|xi| (p(z)-2) + b(z)|xi|q((z)-2). The variable exponents p, q and the nonnegative modulating coefficients a, b are given Lipschitz-continuous functions. It is assumed that 2N/N+2 < p(z), q(z), and that the modulating coefficients and growth exponents satisfy the balance conditions a(z) + b(z) >= alpha > 0, |p(z) - q(z)| < 2/N + 2 in Q (over bar)(T) with alpha = const. We find conditions on the source f and the initial data u (middot,0) that guarantee the existence of a unique strong solution u with u(t) is an element of L-2 (QT) and a|& nabla;u|(p) + b|& nabla;u|(q) is an element of L-infinity (0, T; L-1 (omega)). The solution possesses the property of global higher integrability of the gradient, |& nabla;u|(min{p(z), q(z)} + r) is an element of L-1 (QT) with any r is an element of (0, 4/N+2), which is derived with the help of new interpolation inequalities in the variable Sobolev spaces. The global second-order differentiability of the strong solution is proven: D-i (root F(z, & nabla;u) D(j)u) is an element of L-2 (QT), i=1, 2, ..., N. The same results are obtained for the equation with the regularized flux F(z, root epsilon(2)+(xi, xi)) xi
引用
收藏
页数:48
相关论文
共 50 条
[1]   Regularity results for parabolic systems related to a class of non-Newtonian fluids [J].
Acerbi, E ;
Mingione, G ;
Seregin, GA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (01) :25-60
[2]   Interior and boundary higher integrability of very weak solutions for quasilinear parabolic equations with variable exponents [J].
Adimurthi, Karthik ;
Byun, Sun-Sig ;
Oh, Jehan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194
[3]   Boundary higher integrability for very weak solutions of quasilinear parabolic equations [J].
Adimurthi, Karthik ;
Byun, Sun-Sig .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 121 :244-285
[4]  
ALVES CO, 2021, JMATH ANAL APPL, V504, P21, DOI DOI 10.1016/J.JMAA.2021.125403
[5]   Higher regularity of solutions of singular parabolic equations with variable nonlinearity [J].
Antontsev, S. ;
Shmarev, S. .
APPLICABLE ANALYSIS, 2019, 98 (1-2) :310-331
[6]  
Antontsev S., 2005, ADVDIFFER EQU, V10, P8
[7]  
Antontsev S., 2015, ATLANTIS STUDIES IND, V4, DOI [10.2991/978-94-6239-112-3.Existence,uniqueness,localization,blow-up6, DOI 10.2991/978-94-6239-112-3.EXISTENCE,UNIQUENESS,LOCALIZATION,BLOW-UP6]
[8]  
Arora R., 2020, J MATH ANAL APPL, V493, P31, DOI [DOI 10.1016/J.JMAA.2020.1245069, 10.1016/j.jmaa.2020.1245069]
[9]   Double-phase parabolic equations with variable growth and nonlinear sources [J].
Arora, Rakesh ;
Shmarev, Sergey .
ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01) :304-335
[10]   Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEARITY, 2019, 32 (07) :2481-2495