Dynamics of quantum coherence and nonlocality of a two-spin system in the chemical compass

被引:3
作者
Aiache, Y. [1 ]
El Anouz, K. [1 ]
Metwally, N. [2 ,3 ]
El Allati, A. [1 ,4 ]
机构
[1] Abdelmalek Essaadi Univ, Fac Sci & Tech Al Hoceima, Lab R&D Engn Sci, BP 34, Tetouan 32003, Morocco
[2] Univ Bahrain, Math Dept Coll Sci, POB 320038, Sakhir, Bahrain
[3] Aswan Univ, Dept Math, Aswan 81528, Sahari, Egypt
[4] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
关键词
RADICAL ION-PAIRS; GEMINATE RECOMBINATION; ENTANGLEMENT; STATES;
D O I
10.1103/PhysRevE.109.034101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper a system consisting of two electron spins has been prepared initially in a singlet state using the chemical compass model is considered. It is assumed that each electron spin interacts symmetrically and/or asymmetrically with its respective private nuclear environment in the presence of an external magnetic field. We discussed the effect of the interaction parameters and the external magnetic field on some quantifiers of quantum correlations as entanglement, coherence, Bell inequality, as well as the steerability inequality. It is shown that within a certain range of external magnetic fields, the quantum coherence and entanglement behave similarly. The Bell and the steerable inequalities predicted a similar behavior for symmetric and asymmetric interactions. Moreover, as one increases the external magnetic field, the lower bounds of both inequalities have improved. The usefulness of using the spin state as quantum channel to teleport a two-qubit system has examined where the Bell inequality could be above its classical bounds by controlling the interaction parameters. It is shown that by tuning the coupling parameters the fidelity of the teleported state exceeds the classical bounds, as well as the long-lived stationary fidelity could be achieved during the interaction time.
引用
收藏
页数:10
相关论文
共 38 条
[1]   Treatment of non-Markovian effects to investigate non-locality, dense coding and non-local information [J].
Aiache, Y. ;
Seida, C. ;
El Anouz, K. ;
El Allati, A. .
PHYSICS LETTERS A, 2024, 496
[2]   Entanglement estimation from Bell inequality violation [J].
Bartkiewicz, Karol ;
Horst, Bohdan ;
Lemr, Karel ;
Miranowicz, Adam .
PHYSICAL REVIEW A, 2013, 88 (05)
[3]   Quantifying Coherence [J].
Baumgratz, T. ;
Cramer, M. ;
Plenio, M. B. .
PHYSICAL REVIEW LETTERS, 2014, 113 (14)
[4]  
Bell J S., 1964, Physics Physique Fizika, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, 10.1103/PhysicsPhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
[5]   Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox [J].
Cavalcanti, E. G. ;
Jones, S. J. ;
Wiseman, H. M. ;
Reid, M. D. .
PHYSICAL REVIEW A, 2009, 80 (03)
[6]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&
[7]   Quantification of Einstein-Podolski-Rosen steering for two-qubit states [J].
Costa, A. C. S. ;
Angelo, R. M. .
PHYSICAL REVIEW A, 2016, 93 (02)
[8]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[9]   Quantum key distribution using optical coherent states via amplitude damping [J].
El Allati, A. ;
El Baz, M. .
OPTICAL AND QUANTUM ELECTRONICS, 2015, 47 (05) :1035-1046
[10]   Quantum Steganography via Greenberger-Horne-Zeilinger GHZ4 State [J].
El Allati, A. ;
Medeni, M. B. Ould ;
Hassouni, Y. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 57 (04) :577-582