JOYS plus : Mid-infrared detection of gas-phase SO2 emission in a low-mass protostar The case of NGC 1333 IRAS 2A: Hot core or accretion shock?

被引:13
作者
van Gelder, M. L. [1 ]
Ressler, M. E. [2 ]
van Dishoeck, E. F. [1 ,3 ]
Nazari, P. [1 ]
Tabone, B. [4 ]
Black, J. H. [5 ]
Tychoniec, L. [6 ]
Francis, L. [1 ]
Barsony, M. [7 ]
Beuther, H. [8 ]
Garatti, A. Caratti O. [9 ]
Chen, Y. [1 ]
Gieser, C. [3 ]
le Gouellec, V. J. M. [10 ]
Kavanagh, P. J. [11 ]
Klaassen, P. D. [12 ]
Lew, B. W. P. [13 ,14 ]
Linnartz, H. [15 ]
Majumdar, L. [16 ,17 ]
Perotti, G. [8 ]
Rocha, W. R. M. [15 ]
机构
[1] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
[2] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[3] Max Planck Inst Extraterrestr Phys MPE, Giessenbachstr 1, D-85748 Garching, Germany
[4] Univ Paris Saclay, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France
[5] Chalmers Univ Technol, Onsala Space Observ, Dept Space Earth & Environm, S-43992 Onsala, Sweden
[6] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany
[7] SETI Inst, 189 Bernardo Ave,2nd Floor, Mountain View, CA 94043 USA
[8] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany
[9] INAF, Osservatorio Astron Capodimonte, Salita Moiariello 16, I-80131 Naples, Italy
[10] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-6, Moffett Field, CA 94035 USA
[11] Maynooth Univ, Dept Expt Phys, Maynooth, Co Kildare, Ireland
[12] Royal Observ Edinburgh, UK Astron Technol Ctr, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland
[13] Bay Area Environm Res Inst, Moffett Field, CA 94035 USA
[14] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[15] Leiden Univ, Leiden Observ, Lab Astrophys, POB 9513, NL-2300 RA Leiden, Netherlands
[16] Natl Inst Sci Educ & Res, Sch Earth & Planetary Sci, Jatni 752050, Odisha, India
[17] Homi Bhabha Natl Inst, Training Sch Complex, Mumbai 400094, Maharashtra, India
基金
欧洲研究理事会; 爱尔兰科学基金会; 新加坡国家研究基金会; 荷兰研究理事会; 英国科学技术设施理事会;
关键词
astrochemistry; stars: formation; stars: low-mass; stars: protostars; ISM: molecules; ISM: individual objects: NGC 1333 IRAS 2A; 158; MU-M; STAR-FORMING GALAXIES; FAR-INFRARED LINE; SIMILAR-TO; 7; C II EMISSION; MOLECULAR GAS; CIRCUMGALACTIC MEDIUM; INTERSTELLAR-MEDIUM; DUST-CONTINUUM; LUMINOSITY FUNCTIONS;
D O I
10.1051/0004-6361/202348118
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Thanks to the Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST), our ability to observe the star formation process in the infrared has greatly improved. Due to its unprecedented spatial and spectral resolution and sensitivity in the mid-infrared, JWST/MIRI can see through highly extincted protostellar envelopes and probe the warm inner regions. An abundant molecule in these warm inner regions is SO2, which is a common tracer of both outflow and accretion shocks as well as hot core chemistry. Aims. This paper presents the first mid-infrared detection of gaseous SO2 emission in an embedded low-mass protostellar system rich in complex molecules and aims to determine the physical origin of the SO2 emission. Methods. JWST/MIRI observations taken with the Medium Resolution Spectrometer (MRS) of the low-mass protostellar binary NGC 1333 IRAS 2A in the JWST Observations of Young protoStars (JOYS+) program are presented. The observations reveal emission from the SO2 nu(3) asymmetric stretching mode at 7.35 mu m. Using simple slab models and assuming local thermodynamic equilibrium (LTE), we derived the rotational temperature and total number of SO2 molecules. We then compared the results to those derived from high-angular-resolution SO2 data on the same scales (similar to 50-100 au) obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). Results. The SO2 emission from the nu(3) band is predominantly located on similar to 50-100 au scales around the mid-infrared continuum peak of the main component of the binary, IRAS 2A1. A rotational temperature of 92 +/- 8 K is derived from the nu(3) lines. This is in good agreement with the rotational temperature derived from pure rotational lines in the vibrational ground state (i.e., nu = 0) with ALMA (104 +/- 5 K), which are extended over similar scales. However, the emission of the nu(3) lines in the MIRI-MRS spectrum is not in LTE given that the total number of molecules predicted by a LTE model is found to be a factor of 2 x 10(4) higher than what is derived for the nu = 0 state from the ALMA data. This difference can be explained by a vibrational temperature that is similar to 100 K higher than the derived rotational temperature of the nu = 0 state: T-vib similar to 200 K versus T-rot = 104 +/- 5 K. The brightness temperature derived from the continuum around the nu(3) band (similar to 7.35 mu m) of SO2 is similar to 180 K, which confirms that the nu(3) = 1 level is not collisionally populated but rather infrared-pumped by scattered radiation. This is also consistent with the non-detection of the.2 bending mode at 18-20 mu m. The similar rotational temperature derived from the MIRI-MRS and ALMA data implies that they are in fact tracing the same molecular gas. The inferred abundance of SO2, determined using the LTE fit to the lines of the vibrational ground state in the ALMA data, is 1.0 +/- 0.3 x 10(-8) with respect to H-2, which is on the lower side compared to interstellar and cometary ices (10(-8)-10(-7)). Conclusions. Given the rotational temperature, the extent of the emission (similar to 100 au in radius), and the narrow line widths in the ALMA data (similar to 3.5 km s(-1)), the SO2 in IRAS 2A likely originates from ice sublimation in the central hot core around the protostar rather than from an accretion shock at the disk-envelope boundary. Furthermore, this paper shows the importance of radiative pumping and of combining JWST observations with those from millimeter interferometers such as ALMA to probe the physics on disk scales and to infer molecular abundances.
引用
收藏
页数:19
相关论文
共 189 条
[1]   Fundamental differences between SPH and grid methods [J].
Agertz, Oscar ;
Moore, Ben ;
Stadel, Joachim ;
Potter, Doug ;
Miniati, Francesco ;
Read, Justin ;
Mayer, Lucio ;
Gawryszczak, Artur ;
Kravtosov, Andrey ;
Nordlund, Ake ;
Pearce, Frazer ;
Quilis, Vicent ;
Rudd, Douglas ;
Springel, Volker ;
Stone, James ;
Tasker, Elizabeth ;
Teyssier, Romain ;
Wadsley, James ;
Walder, Rolf .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 380 (03) :963-978
[2]   Cold dust and low [O III]/[C II] ratios: an evolved star-forming population at redshift 7 [J].
Algera, Hiddo S. B. ;
Inami, Hanae ;
Sommovigo, Laura ;
Fudamoto, Yoshinobu ;
Schneider, Raffaella ;
Graziani, Luca ;
Dayal, Pratika ;
Bouwens, Rychard ;
Aravena, Manuel ;
da Cunha, Elisabete ;
Ferrara, Andrea ;
Hygate, Alexander P. S. ;
van Leeuwen, Ivana ;
De Looze, Ilse ;
Palla, Marco ;
Pallottini, Andrea ;
Smit, Renske ;
Stefanon, Mauro ;
Topping, Michael ;
van der Werf, Paul P. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (03) :6867-6887
[3]   Starbursting [O III] emitters and quiescent [C II] emitters in the reionization era [J].
Arata, Shohei ;
Yajima, Hidenobu ;
Nagamine, Kentaro ;
Abe, Makito ;
Khochfar, Sadegh .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 498 (04) :5541-5556
[4]   A sensitive APEX and ALMA CO(1-0), CO(2-1), CO(3-2), and [CI](1-0) spectral survey of 40 local (ultra-)luminous infrared galaxies [J].
Arroyave, I. Montoya ;
Cicone, C. ;
Makroleivaditi, E. ;
Weiss, A. ;
Lundgren, A. ;
Severgnini, P. ;
De Breuck, C. ;
Baumschlager, B. ;
Schimek, A. ;
Shen, S. ;
Aravena, M. .
ASTRONOMY & ASTROPHYSICS, 2023, 673
[5]   Characterizing interstellar filaments with Herschel in IC 5146 [J].
Arzoumanian, D. ;
Andre, Ph. ;
Didelon, P. ;
Koenyves, V. ;
Schneider, N. ;
Men'shchikov, A. ;
Sousbie, T. ;
Zavagno, A. ;
Bontemps, S. ;
Di Francesco, J. ;
Griffin, M. ;
Hennemann, M. ;
Hill, T. ;
Kirk, J. ;
Martin, P. ;
Minier, V. ;
Molinari, S. ;
Motte, F. ;
Peretto, N. ;
Pezzuto, S. ;
Spinoglio, L. ;
Ward-Thompson, D. ;
White, G. ;
Wilson, C. D. .
ASTRONOMY & ASTROPHYSICS, 2011, 529
[6]   The Chemical Composition of the Sun [J].
Asplund, Martin ;
Grevesse, Nicolas ;
Sauval, A. Jacques ;
Scott, Pat .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 47, 2009, 47 :481-522
[7]   CASA, Common Astronomy Software Applications for Radio Astronomy [J].
Bean, Ben ;
CASA Team, C. A. S. A. Team ;
Bhatnagar, Sanjay ;
Castro, Sandra ;
Meyer, Jennifer Donovan ;
Emonts, Bjorn ;
Garcia, Enrique ;
Garwood, Robert ;
Golap, Kumar ;
Villalba, Justo Gonzalez ;
Harris, Pamela ;
Hayashi, Yohei ;
Hoskins, Josh ;
Hsieh, Mingyu ;
Jagannathan, Preshanth ;
Kawasaki, Wataru ;
Keimpema, Aard ;
Kettenis, Mark ;
Lopez, Jorge ;
Marvil, Joshua ;
Masters, Joseph ;
McNichols, Andrew ;
Mehringer, David ;
Miel, Renaud ;
Moellenbrock, George ;
Montesino, Federico ;
Nakazato, Takeshi ;
Ott, Juergen ;
Petry, Dirk ;
Pokorny, Martin ;
Raba, Ryan ;
Rau, Urvashi ;
Schiebel, Darrell ;
Schweighart, Neal ;
Sekhar, Srikrishna ;
Shimada, Kazuhiko ;
Steeb, Jan-Willem ;
Small, Des ;
Sugimoto, Kanako ;
Suoranta, Ville ;
Tsutsumi, Takahiro M. ;
van Bemmel, Ilse ;
Verkouter, Marjolein ;
Wells, Akeem ;
Xiong, Wei ;
Szomoru, Arpad ;
Griffith, Morgan ;
Glendenning, Brian ;
Kern, Jeff .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2022, 134 (1041)
[8]   The chemical composition and evolution of giant molecular cloud cores: A comparison of observation and theory [J].
Bergin, EA ;
Goldsmith, PF ;
Snell, RL ;
Langer, WD .
ASTROPHYSICAL JOURNAL, 1997, 482 (01) :285-297
[9]   PDFCHEM: A new fast method to determine ISM properties and infer environmental parameters using probability distributions [J].
Bisbas, Thomas G. ;
van Dishoeck, Ewine F. ;
Hu, Chia-Yu ;
Schruba, Andreas .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 519 (01) :729-753
[10]   The inception of star cluster formation revealed by [C II] emission around an Infrared Dark Cloud [J].
Bisbas, Thomas G. ;
Tan, Jonathan C. ;
Csengeri, Timea ;
Wu, Benjamin ;
Lim, Wanggi ;
Caselli, Paola ;
Guesten, Rolf ;
Ricken, Oliver ;
Riquelme, Denise .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (01) :L54-L59