A generalized scalar auxiliary variable method for the time-dependent Ginzburg-Landau equations

被引:1
作者
Si, Zhiyong [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
基金
中国国家自然科学基金;
关键词
time-dependent Ginzburg-Landau equation; generalized scalar auxiliary variable algorithm; maximum bound principle; energy stability; GALERKIN FEMS; EFFICIENT; SCHEMES; MODEL;
D O I
10.1007/s10473-024-0215-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper develops a generalized scalar auxiliary variable (SAV) method for the time-dependent Ginzburg-Landau equations. The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations. In this method, the system is decoupled and linearized to avoid solving the non-linear equation at each step. The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability, and this is confirmed by the numerical result, and also shows that the numerical algorithm is stable.
引用
收藏
页码:650 / 670
页数:21
相关论文
共 50 条
  • [21] Time Dependent Ginzburg-Landau Equation for Sheared Granular Flow
    Saitoh, Kuniyasu
    Hayakawa, Hisao
    28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012, VOLS. 1 AND 2, 2012, 1501 : 1001 - 1008
  • [22] Time-dependent Ginzburg-Landau equation of charge-density-waves and numerical simulation of the sliding
    Hayashi, Masahiko
    Takane, Yositake
    Ebisawa, Hiromichi
    PHYSICA B-CONDENSED MATTER, 2015, 460 : 6 - 10
  • [23] Variable-time-step BDF2 nonconforming VEM for coupled Ginzburg-Landau equations
    Li, Meng
    Wang, Lingli
    Wang, Nan
    APPLIED NUMERICAL MATHEMATICS, 2023, 186 : 378 - 410
  • [24] Complex Ginzburg-Landau Equation with Generalized Finite Differences
    Salete, Eduardo
    Vargas, Antonio M.
    Garcia, Angel
    Negreanu, Mihaela
    Benito, Juan J.
    Urena, Francisco
    MATHEMATICS, 2020, 8 (12) : 1 - 13
  • [25] Time-dependent Ginzburg-Landau equation in a car-following model considering the driver's physical delay
    Ge, Hong-xia
    Meng, Xiang-pei
    Cheng, Rong-jun
    Lo, Siu-Ming
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (20) : 3348 - 3353
  • [26] On the perfect superconducting solution for a generalized Ginzburg-Landau equation
    Kachmar, Ayman
    ASYMPTOTIC ANALYSIS, 2007, 54 (3-4) : 125 - 164
  • [27] Complex Ginzburg-Landau equations with dynamic boundary conditions
    Correa, Wellington Jose
    Ozsari, Turker
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 41 : 607 - 641
  • [28] A new error analysis of backward Euler Galerkin finite element method for two-dimensional time-dependent Ginzburg-Landau equation
    Yang, Huaijun
    APPLIED MATHEMATICS LETTERS, 2023, 145
  • [29] Time-dependent Ginzburg-Landau treatment of rf magnetic vortices in superconductors: Vortex semiloops in a spatially nonuniform magnetic field
    Oripov, Bakhrom
    Anlage, Steven
    PHYSICAL REVIEW E, 2020, 101 (03)
  • [30] Non trivial solutions for a system of coupled Ginzburg-Landau equations
    De Leo, Mariano
    Borgna, Juan Pablo
    Huenchul, Cristian
    APPLIED NUMERICAL MATHEMATICS, 2025, 208 : 271 - 289