Number-Theory Renormalization of Vacuum Energy

被引:1
作者
Ivanov, M. G. [1 ]
Dudchenko, V. A. [2 ]
Naumov, V. V. [1 ]
机构
[1] Moscow Inst Phys & Technol, Inst Pereulok 9, Dolgoprudnyi 141701, Russia
[2] Russian Acad Sci, Vernadsky Inst Geochem & Analyt Chem, Kosygina 19, Moscow 117975, Russia
关键词
number theory; lattice QFT; vacuum energy; renormalization;
D O I
10.1134/S2070046623040039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For QFT on a lattice of dimension d >= 3, the vacuum energy (both bosonic and fermionic) is zero if the Hamiltonian is a function of the square of the momentum, and the calculation of the vacuum energy is performed in the ring of residue classes modulo N. This fact is related to a problem from number theory about the number of ways to represent a number as a sum of d squares in the ring of residue classes modulo N.
引用
收藏
页码:284 / 311
页数:28
相关论文
共 11 条
[1]  
Bondi Hermann., 1967, ASSUMPTION MYTH PHYS
[2]  
Collins JC., 1984, Renormalization, DOI DOI 10.1017/CBO9780511622656
[3]  
Dotsenko V. V., 2015, Arithmetic of Quadratic Forms
[4]   Binary Representation of Coordinate and Momentum in Quantum Mechanics [J].
Ivanov, M. G. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 196 (01) :1002-1017
[5]  
Ivanov M. G., 2021, AIP Conf. Proc, V2362, DOI [10.1063/5.0055033, DOI 10.1063/5.0055033]
[6]  
Ivanov M. G., 2023, Quantum Mechanics, V2301
[7]  
Shafarevich I. R., 1985, Number Theory
[8]  
Vavilov N. A., 2020, Computer Tools in Education
[9]  
Vinogradov I. M., 1965, Elements of Number Theory
[10]  
Vladimirov V. S., 1994, Adic Analysis and Mathematical Physics, DOI [10.1142/1581, DOI 10.1142/1581]