Inertial rotational diffusion and magnetic relaxation of the spin system in a strong magnetic field

被引:2
作者
V. Titov, Sergei [1 ]
Dowling, William J. [2 ]
Shchelkonogov, Vasiliy A. [1 ,3 ]
Titov, Anton S. [4 ]
机构
[1] Russian Acad Sci, Kotelnikov Inst Radio Engn & Elect, Fryazino 141190, Moscow, Russia
[2] Trinity Coll Dublin, Dept Elect & Elect Engn, Dublin, Ireland
[3] Pirogov Russian Natl Res Med Univ, Ostrovityanova st, Moscow 117997, Russia
[4] State Univ, Moscow Inst Phys & Technol, Institutskiy per 9, Dolgoprudnyi 141701, Moscow, Russia
关键词
DIELECTRIC-RELAXATION; THERMAL FLUCTUATIONS;
D O I
10.1103/PhysRevB.107.174426
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Analytical expressions for the longitudinal and transverse correlation functions pertaining to inertial magnetic relaxation are obtained by expanding the deterministic magnetization trajectories into a Fourier series and averaging the result over all possible initial conditions applying the stationary Boltzmann distribution function. The longitudinal and transverse components of the magnetic susceptibility tensor are calculated for a system of noninteracting macrospins in a strong uniform external field using Bloch's phenomenological approach, which postulates the exponential evolution of the spin system towards equilibrium, and the Lorentz model of rotational diffusion of the magnetization vector. It is shown that the strength of the external field and the magnitude of the inertia parameters noticeably affect the shape of the susceptibility in the THz (nutation resonance) spectrum region. It is also demonstrated that the simple analytical Lorentz-type expression describes the main features of the complex susceptibility in the ferromagnetic resonance and nutation resonance regions.
引用
收藏
页数:10
相关论文
共 47 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS, V55
[2]   Quantum Brownian motion for magnets [J].
Anders, J. ;
Sait, C. R. J. ;
Horsley, S. A. R. .
NEW JOURNAL OF PHYSICS, 2022, 24 (03)
[3]   Atomistic Spin Dynamic Method with both Damping and Moment of Inertia Effects Included from First Principles [J].
Bhattacharjee, Satadeep ;
Nordstrom, Lars ;
Fransson, Jonas .
PHYSICAL REVIEW LETTERS, 2012, 108 (05)
[4]   Significance of nutation in magnetization dynamics of nanostructures [J].
Boettcher, D. ;
Henk, J. .
PHYSICAL REVIEW B, 2012, 86 (02)
[5]   THERMAL FLUCTUATIONS OF A SINGLE-DOMAIN PARTICLE [J].
BROWN, WF .
PHYSICAL REVIEW, 1963, 130 (05) :1677-+
[6]   THERMAL FLUCTUATIONS OF FINE FERROMAGNETIC PARTICLES [J].
BROWN, WF .
IEEE TRANSACTIONS ON MAGNETICS, 1979, 15 (05) :1196-1208
[7]   Theory of inertial spin dynamics in anisotropic ferromagnets [J].
Cherkasskii, Mikhail ;
Barsukov, Igor ;
Mondal, Ritwik ;
Farle, Michael ;
Semisalova, Anna .
PHYSICAL REVIEW B, 2022, 106 (05)
[8]   Nutation resonance in ferromagnets [J].
Cherkasskii, Mikhail ;
Farle, Michael ;
Semisalova, Anna .
PHYSICAL REVIEW B, 2020, 102 (18)
[9]   Magnetization dynamics in the inertial regime: Nutation predicted at short time scales [J].
Ciornei, M. -C. ;
Rubi, J. M. ;
Wegrowe, J. -E. .
PHYSICAL REVIEW B, 2011, 83 (02)
[10]  
Coey JMD., 2009, Magnetism and Magnetic Materials, DOI DOI 10.1017/CBO9780511845000