Exact solution to two dimensional Dunkl harmonic oscillator in the Non-Commutative phase-space

被引:16
|
作者
Hassanabadi, S. [1 ]
Sedaghatnia, P. [2 ]
Chung, W. S. [3 ,4 ]
Lutfuoglu, B. C. [1 ]
Kriz, J. [1 ]
Hassanabadi, H. [1 ,2 ]
机构
[1] Univ Hradec Kralove, Dept Phys, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
[2] Shahrood Univ Technol, Fac Phys, POB 3619995161-316, Shahrood, Iran
[3] Gyeongsang Natl Univ, Coll Nat Sci, Dept Phys, Jinju 660701, South Korea
[4] Gyeongsang Natl Univ, Res Inst Nat Sci, Coll Nat Sci, Jinju 660701, South Korea
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2023年 / 138卷 / 04期
关键词
GRAVITATIONAL QUANTUM-WELL; MECHANICS; PLANE; SYMMETRY; EQUATION; FIELD;
D O I
10.1140/epjp/s13360-023-03933-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we examine the harmonic oscillator problem in non-commutative phase space (NCPS) by using the Dunkl derivative instead of the habitual one. After defining the Hamilton operator, we use the polar coordinates to derive the binding energy eigenvalue. We find eigenfunctions that correspond to these eigenvalues in terms of the Laguerre functions. We observe that the Dunkl-Harmonic Oscillator in the NCPS differs from the ordinary one in the context of providing additional information on the even and odd parities. Therefore, we conclude that working with the Dunkl operator could be more appropriate because of its rich content.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Exact Solutions of the (2+1)-Dimensional Dirac Oscillator under a Magnetic Field in the Presence of a Minimal Length in the Non-commutative Phase Space
    Boumali, Abdelmalek
    Hassanabadi, Hassan
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2015, 70 (08): : 619 - 627
  • [22] Dirac Oscillator in a Galilean Covariant Non-commutative Space
    G. R. de Melo
    M. de Montigny
    P. J. Pompeia
    E. S. Santos
    International Journal of Theoretical Physics, 2013, 52 : 441 - 457
  • [23] Magnetic susceptibility of graphene in non-commutative phase-space: Extensive and non-extensive entropy
    R. Khordad
    H. R. Rastegar Sedehi
    The European Physical Journal Plus, 134
  • [24] Dirac Oscillator in a Galilean Covariant Non-commutative Space
    de Melo, G. R.
    de Montigny, M.
    Pompeia, P. J.
    Santos, E. S.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (02) : 441 - 457
  • [25] Magnetic susceptibility of graphene in non-commutative phase-space: Extensive and non-extensive entropy
    Khordad, R.
    Sedehi, H. R. Rastegar
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (04):
  • [26] Non-commutative harmonic oscillator in magnetic field and continuous limit
    Jian Jing
    Jian-Feng Chen
    The European Physical Journal C, 2009, 60 : 669 - 674
  • [27] Exact discretization of non-commutative space-time
    Tarasov, V. E.
    MODERN PHYSICS LETTERS A, 2020, 35 (16)
  • [28] Non-commutative harmonic oscillator in magnetic field and continuous limit
    Jing, Jian
    Chen, Jian-Feng
    EUROPEAN PHYSICAL JOURNAL C, 2009, 60 (04): : 669 - 674
  • [29] Two-dimensional boson oscillator under a magnetic field in the presence of a minimal length in the non-commutative space
    Selema, Z.
    Boumal, A.
    REVISTA MEXICANA DE FISICA, 2021, 67 (02) : 226 - 237
  • [30] Quantum Hamiltonian and Spectrum of Schrodinger Equation with Companied Harmonic Oscillator Potential and its Inverse in Both Three Dimensional Non-commutative Real Space and Phase
    Abdelmadjid, Maireche
    JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2015, 7 (04)