Exact solution to two dimensional Dunkl harmonic oscillator in the Non-Commutative phase-space

被引:16
|
作者
Hassanabadi, S. [1 ]
Sedaghatnia, P. [2 ]
Chung, W. S. [3 ,4 ]
Lutfuoglu, B. C. [1 ]
Kriz, J. [1 ]
Hassanabadi, H. [1 ,2 ]
机构
[1] Univ Hradec Kralove, Dept Phys, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
[2] Shahrood Univ Technol, Fac Phys, POB 3619995161-316, Shahrood, Iran
[3] Gyeongsang Natl Univ, Coll Nat Sci, Dept Phys, Jinju 660701, South Korea
[4] Gyeongsang Natl Univ, Res Inst Nat Sci, Coll Nat Sci, Jinju 660701, South Korea
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2023年 / 138卷 / 04期
关键词
GRAVITATIONAL QUANTUM-WELL; MECHANICS; PLANE; SYMMETRY; EQUATION; FIELD;
D O I
10.1140/epjp/s13360-023-03933-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we examine the harmonic oscillator problem in non-commutative phase space (NCPS) by using the Dunkl derivative instead of the habitual one. After defining the Hamilton operator, we use the polar coordinates to derive the binding energy eigenvalue. We find eigenfunctions that correspond to these eigenvalues in terms of the Laguerre functions. We observe that the Dunkl-Harmonic Oscillator in the NCPS differs from the ordinary one in the context of providing additional information on the even and odd parities. Therefore, we conclude that working with the Dunkl operator could be more appropriate because of its rich content.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Exact solution to two dimensional Dunkl harmonic oscillator in the Non-Commutative phase-space
    S. Hassanabadi
    P. Sedaghatnia
    W. S. Chung
    B. C. Lütfüoğlu
    J. Kr̆iz̆
    H. Hassanabadi
    The European Physical Journal Plus, 138
  • [2] Exact solution to two-dimensional isotropic charged harmonic oscillator in uniform magnetic field in non-commutative phase space
    Wei Gao-Feng
    Long Chao-Yun
    Long Zheng-Wen
    Qin Shui-Jie
    CHINESE PHYSICS C, 2008, 32 (04) : 247 - 250
  • [3] Exact solution to two-dimensional isotropic charged harmonic oscillator in uniform magnetic field in non-commutative phase space
    卫高峰
    龙超云
    隆正文
    秦水介
    中国物理C, 2008, (04) : 247 - 250
  • [4] The dynamic of quantum entanglement of two dimensional harmonic oscillator in non-commutative space
    Armel, Azangue Koumetio
    Germain, Yiande Deuto
    Giresse, Tene Alain
    Martin, Tchoffo
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [5] Two-Particle System with Harmonic Oscillator Potential in Non-commutative Phase Space
    Safaei, A. A.
    Panahi, H.
    Hassanabadi, H.
    FEW-BODY SYSTEMS, 2022, 63 (02)
  • [6] Two-Particle System with Harmonic Oscillator Potential in Non-commutative Phase Space
    A. A. Safaei
    H. Panahi
    H. Hassanabadi
    Few-Body Systems, 2022, 63
  • [7] Quantum mechanics of a two-dimensional anharmonic oscillator in a non-commutative phase space
    Hounkonnou, M. N.
    Allognon, J. M.
    Baloitcha, E.
    Bukweli-Kyemba, J. D.
    Mweene, H. V.
    PHYSICA SCRIPTA, 2015, 90 (01)
  • [8] Generalized Spiked Harmonic Oscillator in Non-commutative Space
    Motavalli, Hossein
    Akbarieh, Amin Rezaei
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (09) : 2673 - 2678
  • [9] Generalized Spiked Harmonic Oscillator in Non-commutative Space
    Hossein Motavalli
    Amin Rezaei Akbarieh
    International Journal of Theoretical Physics, 2011, 50 : 2673 - 2678
  • [10] Behavioral Differences of a Time-Dependent Harmonic Oscillator in Commutative Space and Non-Commutative Phase Space
    Sobhani, H.
    Hassanabadi, H.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2018, 15 (05) : 469 - 472