A LOW ORDER NONCONFORMING MIXED FINITE ELEMENT METHOD FOR NON-STATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS SYSTEM

被引:1
作者
Yu, Zhiyun [1 ]
Shi, Dongyang [2 ]
Zhu, Huiqing [3 ]
机构
[1] Zhongyuan Univ Technol, Coll Sci, Zhengzhou 450007, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
[3] Univ Southern Mississippi, Sch Math & Nat Sci, Hattiesburg, MS 39406 USA
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2023年 / 41卷 / 04期
关键词
Non-stationary incompressible MHD problem; Nonconforming mixed FEM; Optimal order error estimates; DISCONTINUOUS-GALERKIN METHODS; 2-DIMENSIONAL CURL-CURL; STATIONARY STOKES; MHD; APPROXIMATION; EQUATIONS; CONVERGENT; DISCRETIZATION; SCHEME;
D O I
10.4208/jcm.2107-m2021-0114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A low order nonconforming mixed finite element method (FEM) is established for the fully coupled non-stationary incompressible magnetohydrodynamics (MHD) problem in a bounded domain in 3D. The lowest order finite elements on tetrahedra or hexahedra are chosen to approximate the pressure, the velocity field and the magnetic field, in which the hydrodynamic unknowns are approximated by inf-sup stable finite element pairs and the magnetic field by H-1(omega)-conforming finite elements, respectively. The existence and uniqueness of the approximate solutions are shown. Optimal order error estimates of L-2(H-1)-norm for the velocity field, L-2(L-2)-norm for the pressure and the broken L-2(H-1)-norm for the magnetic field are derived.
引用
收藏
页码:569 / 587
页数:17
相关论文
共 75 条
[1]   Error analysis of first-order projection method for time-dependent magnetohydrodynamics equations [J].
An, Rong ;
Li, Yuan .
APPLIED NUMERICAL MATHEMATICS, 2017, 112 :167-181
[2]   An L2-stable approximation of the Navier-Stokes convection operator for low-order non-conforming finite elements [J].
Ansanay-Alex, G. ;
Babik, F. ;
Latche, J. C. ;
Vola, D. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 66 (05) :555-580
[3]  
Apel T, 2001, NUMER MATH, V89, P193, DOI 10.1007/s002110000256
[4]   Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations [J].
Armero, F ;
Simo, JC .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 131 (1-2) :41-90
[5]   Two-level finite element method with a stabilizing subgrid for the incompressible MHD equations [J].
Aydin, S. H. ;
Nesliturk, A. I. ;
Tezer-Sezgin, M. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 62 (02) :188-210
[6]  
Banas L, 2010, MATH COMPUT, V79, P1957, DOI 10.1090/S0025-5718-10-02341-0
[7]   QUASI-OPTIMALITY OF ADAPTIVE NONCONFORMING FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS [J].
Becker, Roland ;
Mao, Shipeng .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (03) :970-991
[8]   A finite element method for magnetohydrodynamics [J].
Ben Salah, N ;
Soulaimani, A ;
Habashi, WG .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (43-44) :5867-5892
[9]   Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system [J].
Besse, N ;
Kröner, D .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (06) :1177-1202
[10]   A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem [J].
Brenner, S. C. ;
Cui, J. ;
Li, F. ;
Sung, L. -Y. .
NUMERISCHE MATHEMATIK, 2008, 109 (04) :509-533