In-vitro activity of ceftolozane/tazobactam against Pseudomonas aeruginosa collected in the Study for Monitoring Antimicrobial Resistance Trends (SMART) between 2016 and 2019 in China

被引:5
作者
Yu, Wei [1 ,2 ]
Zhang, Hui [1 ]
Zhu, Ying [1 ,2 ]
Jia, PeiYao [1 ]
Xu, YingChun [1 ,3 ]
Yang, QiWen [1 ,3 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, State Key Lab Complex Severe & Rare Dis, Dept Clin Lab, Beijing, Peoples R China
[2] Chinese Acad Med Sci, Peking Union Med Coll, Grad Sch, Beijing, Peoples R China
[3] Peking Union Med Coll Hosp, Dept Clin Lab, Beijing 100730, Peoples R China
关键词
Ceftolozane; tazobactam; Pseudomonas aeruginosa; Bloodstream infection; Intra-abdominal infection; Urinary tract infection; Respiratory tract infection; TAZOBACTAM; ENTEROBACTERIACEAE; CEPHALOSPORIN; INFECTIONS; HOSPITALS; DISCOVERY; FR264205;
D O I
10.1016/j.ijantimicag.2023.106741
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Ceftolozane/tazobactam (an antipseudomonal cephalosporin) in combination with a well-established ,B-lactamase inhibitor has not been approved to date in clinical practice in China. The aim of this study was to evaluate the in-vitro activity of ceftolozane/tazobactam and comparator agents against Pseudomonas aeruginosa with various resistance patterns. P. aeruginosa ( n = 2178) specimens were col-lected from multiple sources in seven geographic regions of China between 2016 and 2019. All iso-lates were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrome-try, and minimum inhibitory concentrations of various antimicrobial agents (ceftolozane/tazobactam, amikacin, tobramycin, ceftazidime, cefepime, colistin, levofloxacin, aztreonam, meropenem, imipenem and piperacillin/tazobactam) were determined using the Clinical and Laboratory Standards Institute's broth microdilution method. P. aeruginosa demonstrated considerably high rates of multi-drug resistance (MDR, 57.3%), extensive drug resistance (XDR, 43.5%) and difficult-to-treat resistance (DTR, 16.8%). The overall susceptibility of P. aeruginosa to ceftolozane/tazobactam was 81.9%, and ceftolozane/tazobactam showed diverse activity against the three resistant subsets, ranging from 28.5% against DTR P. aerugi-nosa to 68.9% against MDR P. aeruginosa. P. aeruginosa, MDR P. aeruginosa, XDR P. aeruginosa and DTR P. aeruginosa derived from the East (Jiangzhe area) region maintained significantly lower susceptibility to ceftolozane/tazobactam compared with P. aeruginosa, MDR P. aeruginosa, XDR P. aeruginosa and DTR P. aeruginosa from other regions. The susceptibility rates of P. aeruginosa isolated from diverse sources to ceftolozane/tazobactam were similar to isolates from bloodstream infections, with the highest being 88.6%. Compared with other antimicrobial agents, ceftolozane/tazobactam was more active than the ,B- lactams tested but was slightly less active than amikacin. Amikacin demonstrated the best activity against P. aeruginosa and the three resistant subsets. Ceftolozane/tazobactam demonstrated considerable in-vitro activity against P. aeruginosa, MDR P. aeruginosa, XDR P. aeruginosa and DTR P. aeruginosa, indicating that it could be an optional therapeutic agent against P. aeruginosa.(c) 2023 Elsevier Ltd and International Society of Antimicrobial Chemotherapy. All rights reserved.
引用
收藏
页数:8
相关论文
共 36 条
  • [1] INTERACTIONS OF TAZOBACTAM AND CLAVULANATE WITH INDUCIBLY-EXPRESSED AND CONSTITUTIVELY-EXPRESSED CLASS-I BETA-LACTAMASES
    AKOVA, M
    YANG, YJ
    LIVERMORE, DM
    [J]. JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 1990, 25 (02) : 199 - 208
  • [2] [Anonymous], 2021, M100S31 CLSI, V31st
  • [3] Antimicrobial resistance in isolates from inpatients and outpatients in the united states: Increasing importance of the intensive care unit
    Archibald, L
    Phillips, L
    Monnet, D
    McGowan, JE
    Tenover, F
    Gaynes, R
    [J]. CLINICAL INFECTIOUS DISEASES, 1997, 24 (02) : 211 - 215
  • [4] In Vitro Potency of CXA-101, a Novel Cephalosporin, against Pseudomonas aeruginosa Displaying Various Resistance Phenotypes, Including Multidrug Resistance
    Bulik, Catharine C.
    Christensen, Henry
    Nicolau, David P.
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2010, 54 (01) : 557 - 559
  • [5] Molecular epidemiological survey of bacteremia by multidrug resistant Pseudomonas aeruginosa: the relevance of intrinsic resistance mechanisms
    Cavalcanti Dantas, Raquel Cristina
    Tavares e Silva, Rebecca
    Ferreira, Melina Lorraine
    Goncalves, Iara Rossi
    Araujo, Bruna Fuga
    de Campos, Paola Amaral
    Royer, Sabrina
    da Fonseca Batistao, Deivid William
    Gontijo-Filho, Paulo Pinto
    Ribas, Rosineide Marques
    [J]. PLOS ONE, 2017, 12 (05):
  • [6] Genomic and Phenotypic Diversity among Ten Laboratory Isolates of Pseudomonas aeruginosa PAO1
    Chandler, Courtney E.
    Horspool, Alexander M.
    Hill, Preston J.
    Wozniak, Daniel J.
    Schertzer, Jeffrey W.
    Rasko, David A.
    Ernst, Robert K.
    [J]. JOURNAL OF BACTERIOLOGY, 2019, 201 (05)
  • [7] Ceftolozane/Tazobactam: A Novel Cephalosporin/β-Lactamase Inhibitor Combination
    Cho, Jonathan C.
    Fiorenza, Mallory A.
    Estrada, Sandy J.
    [J]. PHARMACOTHERAPY, 2015, 35 (07): : 701 - 715
  • [8] Antimicrobial Resistance in ESKAPE Pathogens
    De Oliveira, David M. P.
    Forde, Brian M.
    Kidd, Timothy J.
    Harris, Patrick N. A.
    Schembri, Mark A.
    Beatson, Scott A.
    Paterson, David L.
    Walker, Mark J.
    [J]. CLINICAL MICROBIOLOGY REVIEWS, 2020, 33 (03)
  • [9] Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat
    Diggle, Stephen P.
    Whiteley, Marvin
    [J]. MICROBIOLOGY-SGM, 2020, 166 (01): : 30 - 33
  • [10] Current Knowledge and Future Directions in Developing Strategies to Combat Pseudomonas aeruginosa Infection
    Dolan, Stephen K.
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2020, 432 (20) : 5509 - 5528