Room-Temperature Smart Sensor Based on Indium Acetate-Functionalized Perovskite CsPbBr3 Nanocrystals for Monitoring Electrolyte in Lithium-Ion Batteries

被引:8
作者
Gao, Danhong [1 ,2 ]
Zhuang, Yuyan [1 ,2 ]
Gao, Shasha [1 ,3 ]
Huang, Sheng [1 ,2 ,3 ]
He, Xinjian [1 ,2 ]
机构
[1] China Univ Min & Technol, Jiangsu Engn Res Ctr Dust Control & Occupat Protec, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Safety Engn, Xuzhou 221116, Jiangsu, Peoples R China
[3] China Univ Min & Technol, Sch Mat Sci & Phys, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion batteries; electrolyte; CsPbBr3; nanocrystals; gas sensor; convolutionalneural networks; PERFORMANCE;
D O I
10.1021/acsami.3c15657
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Monitoring electrolyte components is an effective means of determining the safety status of lithium-ion batteries. In this study, indium acetate was taken as a ligand to functionalize perovskite CsPbBr3 nanocrystals, and then the room-temperature electrolyte sensor based on CsPbBr3 nanocrystals with ligand indium acetate was prepared. The sensor offers high response, long-term stability (21 days), and low detection limits for ethyl methyl carbonate (10 ppm), diethyl carbonate (10 ppm), and ethyl butyrate (1 ppm) gases at room temperature and boasts a fast response/recovery time (1500 ppm, 58.27/103.82 s, 33.58/40.62 s, and 45.05/103.08 s, respectively). Density functional theory results show that the gas sensitivity comes from the adsorption of an electrolyte, which changes the density-of-state distribution so that the electrical response curve changes. And using computational fluid dynamics simulation, it was found that the time required for gas detection by the built-in sensor (3.1 s) was 8.7 times shorter than that of the implantable sensor. This work provides inspiration and rationale for embedding and integrating room-temperature sensors into lithium-ion batteries to monitor safety and health conditions.
引用
收藏
页码:6228 / 6238
页数:11
相关论文
共 44 条
[1]   Neural network approach for ferroelectric hafnium oxide phase identification at the atomistic scale [J].
Cheng, Zhiheng ;
Xie, Xingran ;
Yang, Yimin ;
Wang, Chaolun ;
Luo, Chen ;
Bi, Hengchang ;
Wang, Yan ;
Chu, Junhao ;
Wu, Xing .
MATERIALS TODAY ELECTRONICS, 2023, 3
[2]   3D electro-thermal modelling and experimental validation of lithium polymer-based batteries for automotive applications [J].
Daud, Zul Hilmi Che ;
Chrenko, Daniela ;
Dos Santos, Fabien ;
Aglzim, El-Hassane ;
Keromnes, Alan ;
Le Moyne, Luis .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (08) :1144-1154
[3]   Detection of electrolyte leakage from lithium-ion batteries using a miniaturized sensor based on functionalized double-walled carbon nanotubes [J].
Du, Xiaowen ;
Yang, Ben ;
Lu, Yang ;
Guo, Xiaojun ;
Zu, Guoqing ;
Huang, Jia .
JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (21) :6760-6765
[4]   Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J].
Feng, Xuning ;
Ouyang, Minggao ;
Liu, Xiang ;
Lu, Languang ;
Xia, Yong ;
He, Xiangming .
ENERGY STORAGE MATERIALS, 2018, 10 :246-267
[5]   Preliminary Study on Integration of Fiber Optic Bragg Grating Sensors in Li-Ion Batteries and In Situ Strain and Temperature Monitoring of Battery Cells [J].
Fortier, Aleksandra ;
Tsao, Max ;
Williard, Nick D. ;
Xing, Yinjiao ;
Pecht, Michael G. .
ENERGIES, 2017, 10 (07)
[6]   Design of pulse cleaning device for single-filter cartridge dust collector by multi-factor orthogonal method based numerical simulation [J].
Gao, Danhong ;
Zhou, Gang ;
Yang, Yang ;
Duan, Jinjie ;
Kong, Yang ;
Meng, Qunzhi .
POWDER TECHNOLOGY, 2021, 391 :494-509
[7]   Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes [J].
Golubkov, Andrey W. ;
Fuchs, David ;
Wagner, Julian ;
Wiltsche, Helmar ;
Stangl, Christoph ;
Fauler, Gisela ;
Voitic, Gernot ;
Thaler, Alexander ;
Hacker, Viktor .
RSC ADVANCES, 2014, 4 (07) :3633-3642
[8]   Direct Observation of Bandgap Oscillations Induced by Optical Phonons in Hybrid Lead Iodide Perovskites [J].
Guo, Peijun ;
Xia, Yi ;
Gong, Jue ;
Cao, Duyen H. ;
Li, Xiaotong ;
Li, Xun ;
Zhang, Qi ;
Stoumpos, Constantinos C. ;
Kirschner, Matthew S. ;
Wen, Haidan ;
Prakapenka, Vitali B. ;
Ketterson, John B. ;
Martinson, Alex B. F. ;
Xu, Tao ;
Kanatzidis, Mercouri G. ;
Chan, Maria K. Y. ;
Schaller, Richard D. .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (22)
[9]   Optimized norm-conserving Vanderbilt pseudopotentials (vol 88, 085117, 2013) [J].
Hamann, D. R. .
PHYSICAL REVIEW B, 2017, 95 (23)
[10]   Real-time visualized battery health monitoring sensor with piezoelectric/pyroelectric poly (vinylidene fluoride-trifluoroethylene) and thin film transistor array by in-situ poling [J].
Hu, Xiaoran ;
Jiang, Zhaolian ;
Yan, Liqin ;
Yang, Guiting ;
Xie, Jingying ;
Liu, Shuai ;
Zhang, Qian ;
Xiang, Yong ;
Min, Hang ;
Peng, Xiaoli .
JOURNAL OF POWER SOURCES, 2020, 467