Two-Stage Face Detection and Anti-spoofing

被引:0
|
作者
Nurnoby, M. Faisal [1 ]
El-Alfy, El-Sayed M. [1 ,2 ]
机构
[1] King Fahd Univ Petr & Minerals, Informat & Comp Sci Dept, Coll Comp & Math, Dhahran, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Fellow SDAIA KFUPM Joint Res Ctr Artificial Intel, Interdisciplinary Res Ctr Intelligent Secure Syst, Dhahran, Saudi Arabia
关键词
Presentation attack; Biometric authentication; Face recognition; Face anti-spoofing; Deep learning; Vision Transformer; IMAGE;
D O I
10.1007/978-3-031-47969-4_35
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Face recognition is a widely used biometric technique that has received a lot of attention. It is used to establish and verify the user's identity, and subsequently grant access for authorized users to restricted places and electronic devices. However, one of the challenges is face spoofing or presentation attack allowing fraudsters who attempt to impersonate a targeted victim by fabricating his/her facial biometric data, e.g., by presenting a photograph, a video, or a mask of the targeted person. Several approaches have been proposed to counteract face spoofing known as face anti-spoofing techniques. This paper's major goals are to examine pertinent literature, and develop and evaluate a two-stage approach for face detection and anti-spoofing. In the first stage, a multi-task cascaded convolutional neural network is used to detect the face region, and in the second stage, a multi-head attention-based transformer is used to detect spoofed faces. On two benchmarking datasets, a number of experiments are carried out and examined to assess the proposed solution. The results are encouraging, with a very high accuracy, which encourages further research in this direction to build more robust face authentication systems.
引用
收藏
页码:445 / 455
页数:11
相关论文
共 50 条
  • [41] ONLINE ADAPTIVE PERSONALIZATION FOR FACE ANTI-SPOOFING
    Belli, Davide
    Das, Debasmit
    Major, Bence
    Porikli, Fatih
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 351 - 355
  • [42] Generative Domain Adaptation for Face Anti-Spoofing
    Zhou, Qianyu
    Zhang, Ke-Yue
    Yao, Taiping
    Yi, Ran
    Sheng, Kekai
    Ding, Shouhong
    Ma, Lizhuang
    COMPUTER VISION - ECCV 2022, PT V, 2022, 13665 : 335 - 356
  • [43] Learning Meta Pattern for Face Anti-Spoofing
    Cai, Rizhao
    Li, Zhi
    Wan, Renjie
    Li, Haoliang
    Hu, Yongjian
    Kot, Alex C.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 1201 - 1213
  • [44] Disentangled Representation with Dual-stage Feature Learning for Face Anti-spoofing
    Wang, Yu-Chun
    Wang, Chien-Yi
    Lai, Shang-Hong
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1234 - 1243
  • [45] Face Anti-Spoofing with Multifeature Videolet Aggregation
    Siddiqui, Talha Ahmad
    Bharadwaj, Samarth
    Dhamecha, Tejas I.
    Agarwal, Akshay
    Vatsa, Mayank
    Singh, Richa
    Ratha, Nalini
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 1035 - 1040
  • [46] Face Anti-spoofing: A Comparative Review and Prospects
    Kim W.
    IEIE Transactions on Smart Processing and Computing, 2021, 10 (06): : 455 - 463
  • [47] Unsupervised Domain Adaptation for Face Anti-Spoofing
    Li, Haoliang
    Li, Wen
    Cao, Hong
    Wang, Shiqi
    Huang, Feiyue
    Kot, Alex C.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2018, 13 (07) : 1794 - 1809
  • [48] Disentangled Representation based Face Anti-Spoofing
    Liu, Zhao
    Feng, Zunlei
    Zou, Zeyu
    Zhang, Rong
    Song, Mingli
    Shen, Jianping
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 2017 - 2024
  • [49] Robust face anti-spoofing with depth information
    Wang, Yan
    Nian, Fudong
    Li, Teng
    Meng, Zhijun
    Wang, Kongqiao
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 49 : 332 - 337
  • [50] Diffusing the Liveness Cues for Face Anti-spoofing
    Li, Sheng
    Zhu, Xun
    Feng, Guorui
    Zhang, Xinpeng
    Qian, Zhenxing
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1636 - 1644