Two-Stage Face Detection and Anti-spoofing

被引:0
|
作者
Nurnoby, M. Faisal [1 ]
El-Alfy, El-Sayed M. [1 ,2 ]
机构
[1] King Fahd Univ Petr & Minerals, Informat & Comp Sci Dept, Coll Comp & Math, Dhahran, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Fellow SDAIA KFUPM Joint Res Ctr Artificial Intel, Interdisciplinary Res Ctr Intelligent Secure Syst, Dhahran, Saudi Arabia
关键词
Presentation attack; Biometric authentication; Face recognition; Face anti-spoofing; Deep learning; Vision Transformer; IMAGE;
D O I
10.1007/978-3-031-47969-4_35
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Face recognition is a widely used biometric technique that has received a lot of attention. It is used to establish and verify the user's identity, and subsequently grant access for authorized users to restricted places and electronic devices. However, one of the challenges is face spoofing or presentation attack allowing fraudsters who attempt to impersonate a targeted victim by fabricating his/her facial biometric data, e.g., by presenting a photograph, a video, or a mask of the targeted person. Several approaches have been proposed to counteract face spoofing known as face anti-spoofing techniques. This paper's major goals are to examine pertinent literature, and develop and evaluate a two-stage approach for face detection and anti-spoofing. In the first stage, a multi-task cascaded convolutional neural network is used to detect the face region, and in the second stage, a multi-head attention-based transformer is used to detect spoofed faces. On two benchmarking datasets, a number of experiments are carried out and examined to assess the proposed solution. The results are encouraging, with a very high accuracy, which encourages further research in this direction to build more robust face authentication systems.
引用
收藏
页码:445 / 455
页数:11
相关论文
共 50 条
  • [21] Anti-Spoofing of Live Face Authentication on Smartphone
    Tseng, Tz-Chia
    Shih, Teng-Fu
    Fuh, Chiou-Shann
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2021, 37 (03) : 605 - 616
  • [22] Face anti-spoofing based on projective invariants
    Naitsat, Alexander
    Zeevi, Yehoshua Y.
    2018 IEEE INTERNATIONAL CONFERENCE ON THE SCIENCE OF ELECTRICAL ENGINEERING IN ISRAEL (ICSEE), 2018,
  • [23] Progressive Transfer Learning for Face Anti-Spoofing
    Quan, Ruijie
    Wu, Yu
    Yu, Xin
    Yang, Yi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3946 - 3955
  • [24] Meta-Teacher For Face Anti-Spoofing
    Qin, Yunxiao
    Yu, Zitong
    Yan, Longbin
    Wang, Zezheng
    Zhao, Chenxu
    Lei, Zhen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (10) : 6311 - 6326
  • [25] Face Anti-Spoofing Based on Radon Transform
    Albu, Razvan D.
    2015 13TH INTERNATIONAL CONFERENCE ON ENGINEERING OF MODERN ELECTRIC SYSTEMS (EMES), 2015,
  • [26] Multimodal contrastive learning for face anti-spoofing
    Deng, Pengchao
    Ge, Chenyang
    Wei, Hao
    Sun, Yuan
    Qiao, Xin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 129
  • [27] Research Progress of Face Recognition Anti-spoofing
    Zhang F.
    Zhao S.-K.
    Yuan C.
    Chen W.
    Liu X.-L.
    Chao H.-C.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (07): : 2411 - 2446
  • [28] Face Anti-Spoofing Based on NIR Photos
    Shi, Zhiyuan
    Zhang, Hao
    Gao, Zhibin
    Huang, Lianfen
    PROCEEDINGS OF 2019 IEEE 13TH INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (IEEE-ASID'2019), 2019, : 31 - 35
  • [29] Dual feature disentanglement for face anti-spoofing
    Ma, Yimei
    Qian, Jianjun
    Li, Jun
    Yang, Jian
    PATTERN RECOGNITION, 2024, 155
  • [30] Face anti-spoofing with Image Quality Assessment
    Fourati, Emna
    Elloumi, Wael
    Chetouani, Aladine
    2017 2ND INTERNATIONAL CONFERENCE ON BIO-ENGINEERING FOR SMART TECHNOLOGIES (BIOSMART), 2017,