Detailed molecular composition of solid phase extracted dissolved organic matter (SPEDOM) collected from fractured-rock groundwater was compared to connected surface river water at two different watersheds in the unconfined chalk aquifer of Champagne in France using full scan ultrahigh resolution electrospray and photo-ionization Fourier transform ion cyclotron mass spectrometry (FT-ICR MS), Orbitrap tandem MS (MS/MS) and 1H magnetic resonance spectroscopy (NMR). 1H NMR spectroscopy indicated that groundwater SPEDOM carried a higher contribution of aliphatic compounds while surface river waters SPEDOM were enriched in carboxyl-rich alicyclic molecules (CRAM), acetate derivatives and oxygenated units. Furthermore, we show here that use of photoionization (APPI(+)) in aquifer studies is key, ionizing about eight times more compounds than ESI in surface river water samples, specifically targeting the dissolved organic nitrogen pool, accounting for more than 50% of the total molecular space, as well as a non-polar, more aromatic fraction; with little overlap with compounds detected by ESI(-) FT-ICR MS. On the other hand, groundwater SPEDOM samples did not show similar selectivity as less molecular diversity was observed in APPI compared to ESI. Mass-difference transformation networks (MDiNs) applied to ESI(-) and APPI(+) FT-ICR MS datasets provided an overview of the biogeochemical relationships within the aquifer, revealing chemical diversity and microbial/abiotic reactions. Finally, the combination of ESI(-) FT-ICR MS and detailed Orbitrap MS/MS analysis revealed a pool of polar, anthropogenic sulfur-containing surfactants in the groundwaters, likely originating from agricultural runoff. Overall, our study shows that in this aquifer, groundwater SPEDOM contains a significantly reduced pool of organic compounds compared to surface river waters, possibly related to a combination of lack of sunlight and adsorption of high O/ C formulas to mineral surfaces.