Atom Strapdown: Toward Integrated Quantum Inertial Navigation Systems

被引:5
作者
Tennstedt, Benjamin [1 ]
Rajagopalan, Ashwin [2 ]
Weddig, Nicolai B. [1 ]
Abend, Sven [2 ]
Schoen, Steffen [1 ]
Rasel, Ernst M. [2 ]
机构
[1] Leibniz Univ Hannover, Inst Erdmessung, Lower Saxony, Germany
[2] Leibniz Univ Hannover, Inst Quantenopt, Lower Saxony, Germany
来源
NAVIGATION-JOURNAL OF THE INSTITUTE OF NAVIGATION | 2023年 / 70卷 / 04期
关键词
atom interferometry; hybridization; inertial navigation; sensor fusion; VELOCITY;
D O I
10.33012/navi.604
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We present an alternative technique for estimating the response of a cold atom interferometer (CAI). Using data from a conventional inertial measurement unit (IMU) and common strapdown terminology, the position of the atom wave packet is tracked in a newly introduced sensor frame, enabling hybridization of both systems in terms of acceleration and angular rate measurements. The sensor frame allows for an easier mathematical description of the CAI measure-ment and integration into higher-level navigation systems. The dynamic terms resulting from the transformation of the IMU frame into the CAI sensor frame are evaluated in simulations. The implementation of the method as a prediction model in an extended Kalman filter is explained and demonstrated in realis-tic simulations, showing improvements of over two orders of magnitude with respect to the conventional IMU strapdown solution. Finally, the implications of these findings for future hybrid quantum navigation systems are discussed.
引用
收藏
页数:22
相关论文
共 25 条
[1]   Quantum theory of atomic clocks and gravito-inertial sensors:: an update [J].
Antoine, C ;
Bordé, CJ .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (02) :S199-S207
[2]   Mobile and remote inertial sensing with atom interferometers [J].
Barrett, B. ;
Gominet, P. -A. ;
Cantin, E. ;
Antoni-Micollier, L. ;
Bertoldi, A. ;
Battelier, B. ;
Bouyer, P. ;
Lautier, J. ;
Landragin, A. .
ATOM INTERFEROMETRY, 2014, 188 :493-555
[3]   High-order inertial phase shifts for time-domain atom interferometers [J].
Bongs, K. ;
Launay, R. ;
Kasevich, M. A. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 84 (04) :599-602
[4]   Navigation-Compatible Hybrid Quantum Accelerometer Using a Kalman Filter [J].
Cheiney, Pierrick ;
Fouche, Lauriane ;
Templier, Simon ;
Napolitano, Fabien ;
Battelier, Baptiste ;
Bouyer, Philippe ;
Barrett, Brynle .
PHYSICAL REVIEW APPLIED, 2018, 10 (03)
[5]   Mobile quantum gravity sensor with unprecedented stability [J].
Freier, C. ;
Hauth, M. ;
Schkolnik, V. ;
Leykauf, B. ;
Schilling, M. ;
Wziontek, H. ;
Scherneck, H-G ;
Mueller, J. ;
Peters, A. .
8TH SYMPOSIUM ON FREQUENCY STANDARDS AND METROLOGY 2015, 2016, 723
[6]   Characterization and limits of a cold-atom Sagnac interferometer [J].
Gauguet, A. ;
Canuel, B. ;
Leveque, T. ;
Chaibi, W. ;
Landragin, A. .
PHYSICAL REVIEW A, 2009, 80 (06)
[7]   Twin-lattice atom interferometry [J].
Gebbe, Martina ;
Siemss, Jan-Niclas ;
Gersemann, Matthias ;
Muentinga, Hauke ;
Herrmann, Sven ;
Laemmerzahl, Claus ;
Ahlers, Holger ;
Gaaloul, Naceur ;
Schubert, Christian ;
Hammerer, Klemens ;
Abend, Sven ;
Rasel, Ernst M. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[8]   Differential interferometry using a Bose-Einstein condensate [J].
Gersemann, Matthias ;
Gebbe, Martina ;
Abend, Sven ;
Schubert, Christian ;
Rasel, Ernst M. .
EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (10)
[9]  
HosseiniArani A., 2022, INT ASS GEODESY S, P1, DOI [10.1007/1345_2022_172, DOI 10.1007/1345_2022_172]
[10]  
Jekeli C., 2005, Navigation, V52, P1