CSWGAN-GP: A new method for bearing fault diagnosis under imbalanced condition

被引:22
作者
Gu, Xi [1 ]
Yu, Yaoxiang [1 ]
Guo, Liang [1 ]
Gao, Hongli [1 ]
Luo, Ming [1 ]
机构
[1] Southwest Jiaotong Univ, Engn Res Ctr Adv Driving Energy saving Technol, Chengdu 610031, Peoples R China
关键词
Bearing; Fault diagnosis; Imbalanced classification; Cosine similarity; Gradient -based class activation mapping; PREDICTION; NETWORK;
D O I
10.1016/j.measurement.2023.113014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Most intelligent bearing fault diagnosis methods are conducted with balanced datasets, which is not in line with the reality of industry. Suffering from this problem, intelligent methods are prone to misclassify minority data as majority class. So, it is difficult to develop a robust method to conduct bearing fault diagnosis with imbalanced datasets. Therefore, this work develops a new diagnosis method namely cosine similarity-based self-attention Wasserstein generative adversarial network with gradient penalty (CSWGAN-GP). First, original sampled data are preprocessed to facilitate subsequent analysis. Then, transformed samples are input to the CSWGAN-GP to generate new samples. Penalty terms based on cosine similarity are utilized to constrain the optimization objective. The utilization of self-attention mechanism increases the ability to obtain interested fault features. Finally, bearing fault diagnosis is performed on the new dataset which is rebalanced with the generated samples. The proposed method is assessed through a wide range of metrics and compared with other state-of-the-art methods. From the experiment results, it can be concluded that the CSWGAN-GP presents encouraging performance on the bearing fault diagnosis under imbalanced condition.
引用
收藏
页数:11
相关论文
共 32 条
  • [1] Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, 10.48550/arXiv.1409.0473, DOI 10.48550/ARXIV.1409.0473]
  • [2] MWMOTE-Majority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning
    Barua, Sukarna
    Islam, Md. Monirul
    Yao, Xin
    Murase, Kazuyuki
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (02) : 405 - 425
  • [3] Using Deep Learning-Based Approach to Predict Remaining Useful Life of Rotating Components
    Deutsch, Jason
    He, David
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2018, 48 (01): : 11 - 20
  • [4] Effective data generation for imbalanced learning using conditional generative adversarial networks
    Douzas, Georgios
    Bacao, Fernando
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2018, 91 : 464 - 471
  • [5] Deep Focus Parallel Convolutional Neural Network for Imbalanced Classification of Machinery Fault Diagnostics
    Duan, Andongzhe
    Guo, Liang
    Gao, Hongli
    Wu, Xiangdong
    Dong, Xun
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (11) : 8680 - 8689
  • [6] A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches
    Galar, Mikel
    Fernandez, Alberto
    Barrenechea, Edurne
    Bustince, Humberto
    Herrera, Francisco
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2012, 42 (04): : 463 - 484
  • [7] Generative Adversarial Networks
    Goodfellow, Ian
    Pouget-Abadie, Jean
    Mirza, Mehdi
    Xu, Bing
    Warde-Farley, David
    Ozair, Sherjil
    Courville, Aaron
    Bengio, Yoshua
    [J]. COMMUNICATIONS OF THE ACM, 2020, 63 (11) : 139 - 144
  • [8] Learning from class-imbalanced data: Review of methods and applications
    Guo Haixiang
    Li Yijing
    Shang, Jennifer
    Gu Mingyun
    Huang Yuanyue
    Bing, Gong
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2017, 73 : 220 - 239
  • [9] Deep Convolutional Transfer Learning Network: A New Method for Intelligent Fault Diagnosis of Machines With Unlabeled Data
    Guo, Liang
    Lei, Yaguo
    Xing, Saibo
    Yan, Tao
    Li, Naipeng
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (09) : 7316 - 7325
  • [10] A recurrent neural network based health indicator for remaining useful life prediction of bearings
    Guo, Liang
    Li, Naipeng
    Jia, Feng
    Lei, Yaguo
    Lin, Jing
    [J]. NEUROCOMPUTING, 2017, 240 : 98 - 109