A generalization of a lemma of Kac

被引:0
作者
Arevalo, Carlos D. Martinez [1 ]
机构
[1] Univ Nacl Ingn, Inst Matemat & Ciencias Afines, Lima, Peru
关键词
Kac's lemma; Return time; Measure preserving map;
D O I
10.1007/s00013-023-01849-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by t (k,.) : A -> N the k-th return function for a set A with positive measure and a transformation T : Omega -> Omega that preserves mu. Kac's lemma asserts that integral(A) iota (1,.) = mu(Omega) - mu(E *). Where E* is the set of points that never enter A. We generalize this formula for arbitrary time of return: integral(A) iota (k,.) = k(mu(Omega) - mu(E*)). We also prove that the distributions of iota (1,.) and t (k,.)- iota(k - 1,.) are equal for arbitrary k.
引用
收藏
页码:99 / 107
页数:9
相关论文
共 5 条
[1]   ON THE DISTRIBUTION OF 1ST PASSAGE AND RETURN TIMES FOR SMALL SETS [J].
COGBURN, R .
ANNALS OF PROBABILITY, 1985, 13 (04) :1219-1223
[2]  
Harris T., 2004, T AM MATH SOC, V67, P233
[3]   Entry and return times distribution [J].
Haydn, N. T. A. .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2013, 28 (03) :333-353
[5]  
Viana M., 2016, CAMBRIDGE STUDIES AD, V151