Numerical analysis of large masonry structures: bridging meso and macro scales via artificial neural networks

被引:8
作者
Koocheki, K. [1 ]
Pietruszczak, S. [1 ]
机构
[1] McMaster Univ, Hamilton, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Brick masonry; Anisotropic failure criterion; Artificial neural network; Macroscale modelling; Homogenization; COMPRESSIVE STRENGTH; MULTILEVEL APPROACH; FAILURE CRITERIA; CONTINUUM MODEL; HOMOGENIZATION; WALLS; STRESS;
D O I
10.1016/j.compstruc.2023.107042
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a methodology for analysis of large-scale masonry structures. The approach involves development of a series of artificial neural networks which enable the identification of main variables employed in the macroscopic formulation that incorporates an inelastic constitutive law with embedded discontinuity. The data required for training of neural networks is generated using 'virtual experiments', whereby the 'equivalent' anisotropic response of masonry is obtained through a mesoscale finite element analysis of masonry wallets. The paper outlines the procedure for identification of approximation coeffi-cients describing the orientation-dependency of strength, and other relevant parameters. A numerical example is provided involving analysis of a large masonry wall with multiple openings. The results of macroscale approach are compared with those based on a detailed mesoscale model for the same geom-etry and boundary conditions.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 56 条
[1]   Prediction of the shear strength of reinforced masonry walls using a large experimental database and artificial neural networks [J].
Aguilar, Victor ;
Sandoval, Cristian ;
Adam, Jose M. ;
Garzon-Roca, Julio ;
Valdebenito, Galo .
STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2016, 12 (12) :1661-1674
[2]   DERIVATION OF THE INPLANE ELASTIC CHARACTERISTICS OF MASONRY THROUGH HOMOGENIZATION THEORY [J].
ANTHOINE, A .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1995, 32 (02) :137-&
[3]   Masonry Compressive Strength Prediction Using Artificial Neural Networks [J].
Asteris, Panagiotis G. ;
Argyropoulos, Ioannis ;
Cavaleri, Liborio ;
Rodrigues, Hugo ;
Varum, Humberto ;
Thomas, Job ;
Lourenco, Paulo B. .
TRANSDISCIPLINARY MULTISPECTRAL MODELING AND COOPERATION FOR THE PRESERVATION OF CULTURAL HERITAGE, PT II, 2019, 962 :200-224
[4]   Anisotropic masonry failure criterion using artificial neural networks [J].
Asteris, Panagiotis G. ;
Plevris, Vagelis .
NEURAL COMPUTING & APPLICATIONS, 2017, 28 (08) :2207-2229
[5]   A Review of the Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics [J].
Bock, Frederic E. ;
Aydin, Roland C. ;
Cyron, Christian J. ;
Huber, Norbert ;
Kalidindi, Surya R. ;
Klusemann, Benjamin .
FRONTIERS IN MATERIALS, 2019, 6
[6]   Multilevel approach for brick masonry walls - Part I: A numerical strategy for the nonlinear analysis [J].
Brasile, Sandro ;
Casciaro, Raffaele ;
Formica, Giovanni .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (49-52) :4934-4951
[7]   Multilevel approach for brick masonry walls - Part II: On the use of equivalent continua [J].
Brasile, Sandro ;
Casciaro, Raffaele ;
Formica, Giovanni .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (49-52) :4801-4810
[8]   Artificial neural network implementation for masonry compressive strength estimation [J].
Carozza, Stefano ;
Cimmino, Maddalena .
PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-STRUCTURES AND BUILDINGS, 2020, 173 (09) :635-645
[9]   Homogenization of non-periodic masonry structures [J].
Cluni, F ;
Gusella, V .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2004, 41 (07) :1911-1923
[10]   Out-of-plane behaviour of a full scale stone masonry facade. Part 2: shaking table tests [J].
Costa, Alexandre A. ;
Arede, Antonio ;
Costa, Alfredo Campos ;
Penna, Andrea ;
Costa, Anibal .
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2013, 42 (14) :2097-2111