Weight enumerators of some irreducible cyclic codes of odd length

被引:1
作者
Bishnoi, Monika [1 ,2 ]
Kumar, Pankaj [1 ]
机构
[1] Guru Jambheshwar Univ Sci & Technol, Dept Math, Hisar 125001, Haryana, India
[2] CRM Jat Coll, Dept Math, Hisar 125001, Haryana, India
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2023年 / 15卷 / 04期
关键词
Cyclic codes; Minimum distance; Weight enumerator; Weight distribution; DISTRIBUTIONS;
D O I
10.1007/s12095-023-00637-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let n > 1 be an odd integer, ?(n) be the product of all distinct prime divisors of n, and let q be a prime power such that the multiplicative order of q modulo n is a divisor of (?(n))/(3n) . In this paper, we obtain weight enumerators of all irreducible cyclic codes of length n over F-q with the help of their generator polynomials.
引用
收藏
页码:795 / 809
页数:15
相关论文
共 25 条
[1]   WEIGHTS OF IRREDUCIBLE CYCLIC CODES [J].
BAUMERT, LD ;
MCELIECE, RJ .
INFORMATION AND CONTROL, 1972, 20 (02) :158-&
[3]   Hamming weights in irreducible cyclic codes [J].
Ding, Cunsheng ;
Yang, Jing .
DISCRETE MATHEMATICS, 2013, 313 (04) :434-446
[4]   The Weight Distribution of Some Irreducible Cyclic Codes [J].
Ding, Cunsheng .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (03) :955-960
[5]  
Dinh HQ, 2015, Journal of Algebra Combinatorics Discrete Structures and Applications, V2, P39, DOI [10.13069/jacodesmath.36866, DOI 10.13069/JACODESMATH.36866]
[6]   ON DECODING BCH CODES [J].
FORNEY, GD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1965, 11 (04) :549-557
[7]   WEIGHT DISTRIBUTION OF IRREDUCIBLE CYCLIC CODES WITH BLOCK LENGTHS N1((Q1-1)-N) [J].
HELLESETH, T ;
KLOVE, T ;
MYKKELTVEIT, J .
DISCRETE MATHEMATICS, 1977, 18 (02) :179-211
[8]  
HUFFMAN W.C., 2003, FUNDAMENTALS ERROR C
[9]   THE WEIGHT DISTRIBUTIONS OF SOME IRREDUCIBLE CYCLIC CODES OF LENGTH pn AND 2pn [J].
Kumar, Pankaj ;
Sangwan, Monika ;
Arora, Suresh Kumar .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2015, 9 (03) :277-289
[10]   The minimum Hamming distances of irreducible cyclic codes [J].
Li, Fengwei ;
Yue, Qin ;
Li, Chengju .
FINITE FIELDS AND THEIR APPLICATIONS, 2014, 29 :225-242