Fine properties of solutions to the Cauchy problem for a fast diffusion equation with Caffarelli-Kohn-Nirenberg weights

被引:4
作者
Bonforte, Matteo [1 ]
Simonov, Nikita [2 ,3 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, ICMAT Inst Ciencias Matemat, CSIC UAM UC3M UCM, Calle Nicolas Cabrera 13-15,Campus Cantoblanco, Madrid 28049, Spain
[2] Univ Paris Saclay, CNRS, F-91037 Evry Courcouronnes, France
[3] Univ Evry, Lab Math & Modelisat Evry, F-91037 Evry Courcouronnes, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2023年 / 40卷 / 01期
基金
欧盟地平线“2020”;
关键词
Fast diffusion equation; Caffarelli-Kohn-Nirenberg weights; global Harnack inequalities; tail behaviour; asymptotic behaviour; POROUS-MEDIUM EQUATION; LONG-TIME BEHAVIOR; NONLINEAR HEAT-EQUATIONS; SHARP ASYMPTOTIC RATES; PARABOLIC EQUATIONS; EXTINCTION PROFILE; HARNACK INEQUALITY; INHOMOGENEOUS PME; POINCARE INEQUALITIES; FILTRATION EQUATION;
D O I
10.4171/AIHPC/42
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate fine global properties of nonnegative, integrable solutions to the Cauchy problem for the fast diffusion equation with weights (WFDE) u(t) = vertical bar x vertical bar(gamma) div(vertical bar x vertical bar(-beta) del u(m) )posed on (0, + infinity) x R-d, with d >= 3, in the so-called good fast diffusion range m(c) < m < 1, within the range of parameters gamma, beta which is optimal for the validity of the so-called Caffarelli-Kohn-Nirenberg inequalities. It is natural to ask in which sense such solutions behave like the Barenblatt B (fundamental solution): for instance, asymptotic convergence, i.e vertical bar vertical bar u(t) - B(t)vertical bar vertical bar(Lp(Rd)) (t ->infinity)under right arrow 0, is well known for all 1 <= p <= infinity, while only a few partial results tackle a finer analysis of the tail behaviour. We characterize the maximal set of data X subset of L-+(1) (R-d)that produces solutions which are pointwise trapped between two Barenblatt (global Harnack principle), and uniformly converge in relative error (UREC), i.e. d(infinity)(u(t) = vertical bar vertical bar u(t)/B(t) - 1 vertical bar vertical bar(L infinity(Rd)) (t ->infinity)under right arrow 0. Such a characterization is in terms of an integral condition on u(t = 0). To the best of our knowledge, analogous issues for the linear heat equation, m = 1, do not possess such clear answers, but only partial results. Our characterization is also new for the classical, nonweighted FDE. We are able to provide minimal rates of convergence to B in different norms. Such rates are almost optimal in the nonweighted case, and become optimal for radial solutions. To complete the panorama, we show that solutions with data in L-+(1) (R-d) / X, preserve the same "fat" spatial tail for all times, hence UREC fails and d(infinity) (u(t)) = infinity, even if vertical bar vertical bar u(t) - B(t)vertical bar vertical bar(L1(Rd)) (t ->infinity)under right arrow 0.
引用
收藏
页码:1 / 59
页数:59
相关论文
共 98 条
[1]   Holder regularity and Harnack inequality for degenerate parabolic equations related to Caffarelli-Kohn-Nirenberg inequalities [J].
Abdellaoui, B ;
Alonso, IP .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 57 (7-8) :971-1003
[2]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[3]  
Bakry D., 1985, S MINAIRE PROBABILIT, V1123, P177, DOI 10.1007/BFb0075847
[4]  
BENILAN P, 1981, CONTRIBUTIONS ANAL G, P23
[5]   Hardy-Poincare inequalities and applications to nonlinear diffusions [J].
Blanchet, Adrien ;
Bonforte, Matteo ;
Dolbeault, Jean ;
Grillo, Gabriele ;
Vazquez, Juan-Luis .
COMPTES RENDUS MATHEMATIQUE, 2007, 344 (07) :431-436
[6]   Asymptotics of the Fast Diffusion Equation via Entropy Estimates [J].
Blanchet, Adrien ;
Bonforte, Matteo ;
Dolbeault, Jean ;
Grillo, Gabriele ;
Vazquez, Juan Luis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 191 (02) :347-385
[7]   Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities [J].
Bonforte, M. ;
Dolbeault, J. ;
Grillo, G. ;
Vazquez, J. L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (38) :16459-16464
[8]   Fast diffusion flow on manifolds of nonpositive curvature [J].
Bonforte, Matteo ;
Grillo, Gabriele ;
Vazquez, Juan Luis .
JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (01) :99-128
[9]  
Bonforte M, 2022, Arxiv, DOI arXiv:2007.03674
[10]   The Cauchy problem for the fast p-Laplacian evolution equation. Characterization of the global Harnack principle and fine asymptotic behaviour [J].
Bonforte, Matteo ;
Simonov, Nikita ;
Stan, Diana .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 163 :83-131