Interfacial Polarization Restriction for Ultrahigh Energy-Storage Density in Lead-Free Ceramics

被引:124
|
作者
Cao, Wenjun [1 ]
Lin, Renju [2 ]
Hou, Xu [3 ]
Li, Li [1 ,2 ]
Li, Feng
Bo, Defu [1 ]
Ge, Binghui [2 ]
Song, Dongsheng [2 ]
Zhang, Jian [4 ]
Cheng, Zhenxiang [5 ]
Wang, Chunchang [1 ]
机构
[1] Anhui Univ, Sch Mat Sci & Engn, Lab Dielect Funct Mat, Hefei 230601, Peoples R China
[2] Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Peoples R China
[3] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hung Hom, Hong Kong 999077, Peoples R China
[4] Wenzhou Univ, Coll Elect & Elect Engn, Wenzhou 325035, Peoples R China
[5] Univ Wollongong, Inst Superconducting & Elect Mat, Squires Way, North Wollongong, NSW 2500, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
breakdown strengths; energy-storages; interfacial polarization; lead-free ceramics; BREAKDOWN STRENGTH; CAPACITORS;
D O I
10.1002/adfm.202301027
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dielectric capacitors with high power densities are crucial for pulsed electronic devices and clean energy technologies. However, their breakdown strengths (E-b) strongly limit their power densities. Herein, by modifying the interfacial polarization by adjusting the difference in activation energies (Delta phi) between the grain and grain boundary phases, the significant enhancement of E-b in the (1-x)(0.94Na(0.5)Bi(0.5)TiO(3)-0.06BaTiO(3))-xCa(0.7)La(0.2)TiO(3) (NBT-BT-xCLT, x = 0, 0.18, 0.23, 0.28, 0.33, 0.38, and 0.43) ceramics is achieved. The results indicate that adding CLT introduces a super-paraelectric state, refines grain size, and, most importantly, decreases the Delta phi value. When Delta phi is tuned close to zero in the specific NBT-BT-0.38CLT sample, a significant boost in E-b value of 64 kV mm(-1) is obtained. As a result, the recoverable energy storage density of the ceramics reaches an unprecedented giant value of 15.1 J cm(-3) together with a high efficiency of 82.4%, as well as ultrafast discharge rate of 32 ns, and high thermal and frequency stability. The results demonstrate that interfacial polarization engineering holds huge promise for the development of dielectrics with high-energy-storage performance.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Ultrahigh Energy-Storage Density in NaNbO3-Based Lead-Free Relaxor Antiferroelectric Ceramics with Nanoscale Domains
    Qi, He
    Zuo, Ruzhong
    Xie, Aiwen
    Tian, Ao
    Fu, Jian
    Zhang, Yi
    Zhang, Shujun
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (35)
  • [2] Ultrahigh Energy-Storage Density of BaTiO3-Based Ceramics via the Interfacial Polarization Strategy
    Wang, Changyuan
    Cao, Wenjun
    Liang, Cen
    Zhao, Hanyu
    Cheng, Chao
    Huang, Shouguo
    Yu, Yi
    Wang, Chunchang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (36) : 42774 - 42783
  • [3] Interfacial-Polarization Engineering in BNT-Based Bulk Ceramics for Ultrahigh Energy-Storage Density
    Cao, Wenjun
    Li, Li
    Chen, Kun
    Huang, Xuecen
    Li, Feng
    Wang, Chunchang
    Zheng, Jun
    Hou, Xu
    Cheng, Zhenxiang
    ADVANCED SCIENCE, 2024, 11 (48)
  • [4] Ultrahigh energy storage density in lead-free relaxor antiferroelectric ceramics via domain engineering
    Jiang, Jie
    Meng, Xiangjun
    Li, Ling
    Guo, Shun
    Huang, Ming
    Zhang, Ji
    Wang, Jing
    Hao, Xihong
    Zhu, Heguo
    Zhang, Shan-Tao
    Energy Storage Materials, 2021, 43 : 383 - 390
  • [5] Ultrahigh energy storage density in lead-free relaxor antiferroelectric ceramics via domain engineering
    Jiang, Jie
    Meng, Xiangjun
    Li, Ling
    Guo, Shun
    Huang, Ming
    Zhang, Ji
    Wang, Jing
    Hao, Xihong
    Zhu, Heguo
    Zhang, Shan-Tao
    ENERGY STORAGE MATERIALS, 2021, 43 : 383 - 390
  • [6] SPS prepared NN-24SBT lead-free relaxor-antiferroelectric ceramics with ultrahigh energy-storage density and efficiency
    Tan, Hua
    Yan, Zilin
    Chen, Sheng-Gui
    Samart, Chanatip
    Takesue, Naohisa
    Salamon, David
    Liu, Yang
    Zhang, Haibo
    SCRIPTA MATERIALIA, 2022, 210
  • [7] A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors
    Zhang, Haibo
    Wei, Tian
    Zhang, Qi
    Ma, Weigang
    Fan, Pengyuan
    Salamon, David
    Zhang, Shan-Tao
    Nan, Bo
    Tan, Hua
    Ye, Zuo-Guang
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (47) : 16648 - 16667
  • [8] Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design
    Chen, Liang
    Deng, Shiqing
    Liu, Hui
    Wu, Jie
    Qi, He
    Chen, Jun
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [9] Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design
    Liang Chen
    Shiqing Deng
    Hui Liu
    Jie Wu
    He Qi
    Jun Chen
    Nature Communications, 13
  • [10] Realizing High Comprehensive Energy Storage and Ultrahigh Hardness in Lead-Free Ceramics
    Xing, Jie
    Huang, Yanli
    Xu, Qian
    Wu, Bo
    Zhang, Qiming
    Tan, Zhi
    Chen, Qiang
    Wu, Jiagang
    Zhu, Jianguo
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (24) : 28472 - 28483