Global Context Attention for Robust Visual Tracking

被引:3
作者
Choi, Janghoon [1 ]
机构
[1] Kyungpook Natl Univ, Grad Sch Data Sci, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
visual tracking; object tracking; attention models; model-free tracking;
D O I
10.3390/s23052695
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Although there have been recent advances in Siamese-network-based visual tracking methods where they show high performance metrics on numerous large-scale visual tracking benchmarks, persistent challenges regarding the distractor objects with similar appearances to the target object still remain. To address these aforementioned issues, we propose a novel global context attention module for visual tracking, where the proposed module can extract and summarize the holistic global scene information to modulate the target embedding for improved discriminability and robustness. Our global context attention module receives a global feature correlation map to elicit the contextual information from a given scene and generates the channel and spatial attention weights to modulate the target embedding to focus on the relevant feature channels and spatial parts of the target object. Our proposed tracking algorithm is tested on large-scale visual tracking datasets, where we show improved performance compared to the baseline tracking algorithm while achieving competitive performance with real-time speed. Additional ablation experiments also validate the effectiveness of the proposed module, where our tracking algorithm shows improvements in various challenging attributes of visual tracking.
引用
收藏
页数:18
相关论文
共 56 条
  • [1] [Anonymous], 2013, P NIPS
  • [2] Bertinetto L, 2021, Arxiv, DOI arXiv:1606.09549
  • [3] Learning Discriminative Model Prediction for Tracking
    Bhat, Goutam
    Danelljan, Martin
    Van Gool, Luc
    Timofte, Radu
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6181 - 6190
  • [4] Unveiling the Power of Deep Tracking
    Bhat, Goutam
    Johnander, Joakim
    Danelljan, Martin
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. COMPUTER VISION - ECCV 2018, PT II, 2018, 11206 : 493 - 509
  • [5] Efficient Visual Tracking with Exemplar Transformers
    Blatter, Philippe
    Kanakis, Menelaos
    Danelljan, Martin
    Van Gool, Luc
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 1571 - 1581
  • [6] Visual Object Tracking Performance Measures Revisited
    Cehovin, Luka
    Leonardis, Ales
    Kristan, Matej
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (03) : 1261 - 1274
  • [7] Transformer Tracking
    Chen, Xin
    Yan, Bin
    Zhu, Jiawen
    Wang, Dong
    Yang, Xiaoyun
    Lu, Huchuan
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8122 - 8131
  • [8] Siamese Box Adaptive Network for Visual Tracking
    Chen, Zedu
    Zhong, Bineng
    Li, Guorong
    Zhang, Shengping
    Ji, Rongrong
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6667 - 6676
  • [9] SiamMixer: A Lightweight and Hardware-Friendly Visual Object-Tracking Network
    Cheng, Li
    Zheng, Xuemin
    Zhao, Mingxin
    Dou, Runjiang
    Yu, Shuangming
    Wu, Nanjian
    Liu, Liyuan
    [J]. SENSORS, 2022, 22 (04)
  • [10] High-Performance Long-Term Tracking with Meta-Updater
    Dai, Kenan
    Zhang, Yunhua
    Wang, Dong
    Li, Jianhua
    Lu, Huchuan
    Yang, Xiaoyun
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6297 - 6306