Curriculum learning for data-driven modeling of dynamical systems

被引:6
|
作者
Bucci, Michele Alessandro [1 ]
Semeraro, Onofrio [2 ]
Allauzen, Alexandre [3 ]
Chibbaro, Sergio [2 ]
Mathelin, Lionel [2 ]
机构
[1] Univ Paris Saclay, TAU Team, INRIA Saclay, LISN, F-91190 Gif Sur Yvette, France
[2] Univ Paris Saclay, CNRS, LISN, F-91440 Orsay, France
[3] Univ Paris 09, LAMSADE, Pl Marechal Lattre Tassigny, F-75016 Paris, France
关键词
NEURAL-NETWORKS; IDENTIFICATION; LAWS;
D O I
10.1140/epje/s10189-023-00269-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The reliable prediction of the temporal behavior of complex systems is key in numerous scientific fields. This strong interest is however hindered by modeling issues: Often, the governing equations describing the physics of the system under consideration are not accessible or, when known, their solution might require a computational time incompatible with the prediction time constraints. Not surprisingly, approximating complex systems in a generic functional format and informing it ex-nihilo from available observations has become common practice in the age of machine learning, as illustrated by the numerous successful examples based on deep neural networks. However, generalizability of the models, margins of guarantee and the impact of data are often overlooked or examined mainly by relying on prior knowledge of the physics. We tackle these issues from a different viewpoint, by adopting a curriculum learning strategy. In curriculum learning, the dataset is structured such that the training process starts from simple samples toward more complex ones in order to favor convergence and generalization. The concept has been developed and successfully applied in robotics and control of systems. Here, we apply this concept for the learning of complex dynamical systems in a systematic way. First, leveraging insights from the ergodic theory, we assess the amount of data sufficient for a-priori guaranteeing a faithful model of the physical system and thoroughly investigate the impact of the training set and its structure on the quality of long-term predictions. Based on that, we consider entropy as a metric of complexity of the dataset; we show how an informed design of the training set based on the analysis of the entropy significantly improves the resulting models in terms of generalizability and provide insights on the amount and the choice of data required for an effective data-driven modeling.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Data-driven discovery of stochastic dynamical systems with α-stable Levy noise based on residual networks
    Li, Kaixuan
    Li, Yang
    Lu, Linghongzhi
    Liu, Xianbin
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 462
  • [32] Data-driven stabilization of unknown nonlinear dynamical systems using a cognition-based framework
    Nowak, Xi
    Soeffker, Dirk
    NONLINEAR DYNAMICS, 2016, 86 (01) : 1 - 15
  • [33] Data-Driven Unsteady Aeroelastic Modeling for Control
    Hickner, Michelle K.
    Fasel, Urban
    Nair, Aditya G.
    Brunton, Bingni W.
    Brunton, Steven L.
    AIAA JOURNAL, 2023, 61 (02) : 780 - 792
  • [34] A data-driven approach for discovering stochastic dynamical systems with non-Gaussian Levy noise
    Li, Yang
    Duan, Jinqiao
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 417
  • [35] Data-Driven Supervised Learning for Life Science Data
    Muench, Maximilian
    Raab, Christoph
    Biehl, Michael
    Schleif, Frank-Michael
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2020, 6
  • [36] An Interpretable Data-Driven Learning Approach for Nonlinear Aircraft Systems With Noisy Interference
    Cao, Rui
    Lu, Kelin
    Liu, Yanbin
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2025, 61 (01) : 182 - 194
  • [37] Interpretable data-driven modeling of hyperelastic membranes
    Salamatova, Victoria
    Liogky, Alexey
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2023, 39 (11)
  • [38] Data-Driven GENERIC Modeling of Poroviscoelastic Materials
    Ghnatios, Chady
    Alfaro, Iciar
    Gonzalez, David
    Chinesta, Francisco
    Cueto, Elias
    ENTROPY, 2019, 21 (12)
  • [39] The Evolution of Data-Driven Modeling in Organic Chemistry
    Williams, Wendy L.
    Zeng, Lingyu
    Gensch, Tobias
    Sigman, Matthew S.
    Doyle, Abigail G.
    Anslyn, Eric, V
    ACS CENTRAL SCIENCE, 2021, 7 (10) : 1622 - 1637
  • [40] Data-Driven Modeling for Transonic Aeroelastic Analysis
    Fonzi, Nicola
    Brunton, Steven L.
    Fasel, Urban
    JOURNAL OF AIRCRAFT, 2024, 61 (02): : 625 - 637