Curriculum learning for data-driven modeling of dynamical systems

被引:6
|
作者
Bucci, Michele Alessandro [1 ]
Semeraro, Onofrio [2 ]
Allauzen, Alexandre [3 ]
Chibbaro, Sergio [2 ]
Mathelin, Lionel [2 ]
机构
[1] Univ Paris Saclay, TAU Team, INRIA Saclay, LISN, F-91190 Gif Sur Yvette, France
[2] Univ Paris Saclay, CNRS, LISN, F-91440 Orsay, France
[3] Univ Paris 09, LAMSADE, Pl Marechal Lattre Tassigny, F-75016 Paris, France
来源
EUROPEAN PHYSICAL JOURNAL E | 2023年 / 46卷 / 03期
关键词
NEURAL-NETWORKS; IDENTIFICATION; LAWS;
D O I
10.1140/epje/s10189-023-00269-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The reliable prediction of the temporal behavior of complex systems is key in numerous scientific fields. This strong interest is however hindered by modeling issues: Often, the governing equations describing the physics of the system under consideration are not accessible or, when known, their solution might require a computational time incompatible with the prediction time constraints. Not surprisingly, approximating complex systems in a generic functional format and informing it ex-nihilo from available observations has become common practice in the age of machine learning, as illustrated by the numerous successful examples based on deep neural networks. However, generalizability of the models, margins of guarantee and the impact of data are often overlooked or examined mainly by relying on prior knowledge of the physics. We tackle these issues from a different viewpoint, by adopting a curriculum learning strategy. In curriculum learning, the dataset is structured such that the training process starts from simple samples toward more complex ones in order to favor convergence and generalization. The concept has been developed and successfully applied in robotics and control of systems. Here, we apply this concept for the learning of complex dynamical systems in a systematic way. First, leveraging insights from the ergodic theory, we assess the amount of data sufficient for a-priori guaranteeing a faithful model of the physical system and thoroughly investigate the impact of the training set and its structure on the quality of long-term predictions. Based on that, we consider entropy as a metric of complexity of the dataset; we show how an informed design of the training set based on the analysis of the entropy significantly improves the resulting models in terms of generalizability and provide insights on the amount and the choice of data required for an effective data-driven modeling.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Data-Driven Control and Learning Systems
    Hou, Zhongsheng
    Gao, Huijun
    Lewis, Frank L.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (05) : 4070 - 4075
  • [22] DATA-DRIVEN LEARNING OF NONAUTONOMOUS SYSTEMS
    Qin, Tong
    Chen, Zhen
    Jakeman, John D.
    Xiu, Dongbin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (03): : A1607 - A1624
  • [23] Data-Driven Modeling and Control of Complex Dynamical Systems Arising in Renal Anemia Therapy
    Casper, Sabrina
    Fuertinger, Doris H.
    Kotanko, Peter
    Mechelli, Luca
    Rohleff, Jan
    Volkwein, Stefan
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI, 2022, 39 : 155 - 161
  • [24] Data-driven reduced-order modeling for nonautonomous dynamical systems in multiscale media
    Li, Mengnan
    Jiang, Lijian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [25] Data-driven reconstruction of partially observed dynamical systems
    Tandeo, Pierre
    Ailliot, Pierre
    Sevellec, Florian
    NONLINEAR PROCESSES IN GEOPHYSICS, 2023, 30 (02) : 129 - 137
  • [26] Error bounds for data-driven models of dynamical systems
    Oleng, Nicholas O.
    Gribok, Andrei
    Reifman, Jaques
    COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (05) : 670 - 679
  • [27] Data-driven prediction in dynamical systems: recent developments
    Ghadami, Amin
    Epureanu, Bogdan I.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2229): : 1429 - 1442
  • [28] Case Studies in Data-Driven Verification of Dynamical Systems
    Kozarev, Alexandar
    Quindlen, John
    How, Jonathan
    Topcu, Ufuk
    HSCC'16: PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2016, : 81 - 86
  • [29] Data-driven Influence Based Clustering of Dynamical Systems
    Sinha, Subhrajit
    2022 EUROPEAN CONTROL CONFERENCE (ECC), 2022, : 1043 - 1048
  • [30] Data-driven Resilience Characterization of Control Dynamical Systems
    Sinha, Subhrajit
    Pushpak, Sai Nandanoori
    Ramachandran, Thiagarajan
    Bakker, Craig
    Singhal, Ankit
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 2186 - 2193